Skip to content

16. Techniques of Differentiation

Dated: 30-10-2024

Derivatives of Constant Functions

\[\frac{d}{dx} (c) = 0\]

Proof

\[\lim_{h \rightarrow 0} \frac{f(h + x) - f(x)}{h}\]

Since we know that \(f(h + x) = f(x) = c\).

\[ =\lim_{h \rightarrow 0} \frac{0 - 0}{h}\]
\[= \lim_{h \rightarrow 0} \frac{0}{h}\]
\[ = \lim_{h \rightarrow 0} 0\]
\[ = 0\]

Power Rule

\[\frac{d}{dx}(x^n) = n \cdot x^{n - 1}\]

Proof

\[\frac{d}{dx}(x^n) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}\]
\[= \lim_{h \rightarrow 0} \frac{(x + h)^n - x^n}{h}\]

Using binomial theorem1

\[= \lim_{h \rightarrow 0} \frac{\left[x^n + nx^{n-1}h + \ldots + h^n\right] - x^n}{h}\]
\[= \lim_{h \rightarrow 0} \frac{nx^{n-1}h + \ldots + h^n}{h}\]

Taking \(h\) as common factor, out

\[= \lim_{h \rightarrow 0} \frac{h \left(nx^{n-1} + \ldots + h^{n1}\right)}{h}\]
\[= \lim_{h \rightarrow 0} \left(nx^{n-1} + \ldots + h^{n - 1}\right)\]

Since all the terms except for first one include some factor of \(h\), most of the terms become null.

\[= nx^{n-1}\]

Sum or Difference of the Functions

\[\frac{d}{dx}\left(f(x) + g(x)\right) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))\]

Proof

\[\frac{d}{dx}\left(f(x) + g(x)\right) = \lim_{h \rightarrow 0} \frac{f(x+h) + g(x + h) - f(x) - g(x)}{h}\]
\[\frac{d}{dx}\left(f(x) + g(x)\right) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x) + g(x + h) - g(x)}{h}\]
\[\frac{d}{dx}\left(f(x) + g(x)\right) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \rightarrow 0} \frac{g(x + h) - g(x)}{h}\]
\[\frac{d}{dx}\left(f(x) + g(x)\right) = \frac{d}{dx} f(x) + \frac{d}{dx} g(x)\]

Product

\[\frac{d}{dx}\left(f(x) \cdot g(x)\right) = f(x) \cdot \frac{d}{dx} g(x) + g(x) \cdot \frac{d}{dx} f(x)\]

Proof

\[\frac{d}{dx}\left(f(x) \cdot g(x)\right) = \lim_{h \rightarrow 0} \frac{f(x + h) \cdot g(x + h) - f(x) \cdot g(x)}{h}\]
\[= \lim_{h \rightarrow 0} \frac{f(x + h) \cdot g(x + h) - f(x) \cdot g(x)}{h}\]

Adding and subtracting \(f(x + h) \cdot g(x)\)

\[= \lim_{h \rightarrow 0} \frac{f(x + h) \cdot g(x + h) - f(x + h) \cdot g(x) + f(x + h) \cdot g(x) - f(x) \cdot g(x)}{h}\]
\[= \lim_{h \rightarrow 0} \frac{f(x + h) \cdot \left( g(x + h) - g(x) \right) + g(x) \cdot \left(f(x + h) - f(x) \right)}{h}\]
\[= \lim_{h \rightarrow 0} \frac{f(x + h) \cdot \left( g(x + h) - g(x) \right)}{h} + \lim_{h \rightarrow 0}\frac{g(x) \cdot \left(f(x + h) - f(x) \right)}{h}\]
\[= f(x) \cdot \frac{d}{dx} g(x) + g(x) \cdot \frac{d}{dx} f(x)\]

Quotient

\[\frac{d}{dx} \left[ \frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx}[f(x)] - f(x) \frac{d}{dx}[g(x)]}{[g(x)]^2} \]

Proof

Pasted image 20240817144720.png

Reciprocal Theorem

\[\frac{d}{dx} \left( \frac{1}{g(x)} \right) = -\frac{\frac{d}{dx} \left( g(x) \right)}{\left( g(x) \right)^2} \]

References

Read more about notations and symbols.


  1. Read more about binomial theorem