26. Integration by Substitution
Dated: 30-10-2024
Let's say we have
\[\frac{d}{du} g(u) = f(u)\]
Then
\[\int f(u) du = \int \left(\frac{d}{du}g(u)\right) du\]
\[= \int d \,g(u)\]
\[= g(u) + C\]
Now let us assume that \(u\) is a function
1 of \(x\). i.e. \(u(x)\). Then,
\[\frac{d}{dx} g(u) = \frac{d}{du} g(u) \cdot \frac{du}{dx} = f(u) \cdot \frac{du}{dx}\]
We can use this conclusion in a very specific scenario. Let us take a look
\[\int \left( f(u) \frac{du}{dx} \right) dx = \int \frac{d}{dx} (g(u)) dx = g(u) + C
\]
Example
\[\int (x^2 + 1)^{50} \cdot 2x \cdot dx\]
Now let us define some variables
.
-
\[f(u) = u^{50}\]
-
\[u = (x^2 + 1)\]
-
\[\frac{du}{dx} = 2x\]
So if we replace our data with the variables
, we get
\[\int f(u) \cdot \frac{du}{dx} \cdot dx = \int f(u) du\]
This suggests we just need to integrate
2 \(f(u)\).
\[\int f(u) du = \int u^{50} du\]
\[= \frac{u^{50 + 1}}{50 + 1} + C\]
\[= \frac{u^{51}}{51} + C\]
Substituting \(u\), we get
\[= \frac{(x^2 + 1)^{51}}{51} + C\]
References
Read more about notations and symbols.
-
Read more about integration. ↩