Skip to content

Dated: 30-10-2024

Double Integral1 for Non Rectangular Region

Example

Evaluate an equivalent integral1 of reversed order with respect to

\[\int_0^2\int_{x^2}^{2x} (4x + 2) dydx\]
\[\text{where } x^2 \le y \le 2x \text{ and } 0 \le x \le 2\]

Reversing the order, we get

\[\int_{x^2}^{2x}\int_0^2(4x+2)dxdy\]

We want the limits of outer integral1 to be numeric values so it can yield numeric answers.
Therefore, from the inequality2 \(x^2 \le y \le 2x\), we got \(\frac y 2 \le x \le \sqrt y\)
Putting \(x = 0,2\) in the inequality2 produces \(0 \le y \le 4\).
Hence,

\[\int_{0}^{4}\int_{\frac y 2}^{\sqrt y}(4x+2)dxdy\]

Evaluate this and we will get

\[= 8\]

References

Read more about notations and symbols.


  1. Read more about integrals

  2. Read more about inequalities