Dated: 30-10-2024
Examples
Example
Let \(R_a\) be a region bounded by circle
\(x^2 + y^2 = a^2\).
Then evaluate
\[\int_{- \infty}^{+ \infty}\int_{- \infty}^{+ \infty} e^{-(x^2 + y^2)} dx dy\]
\[= \lim_{a \to \infty} \iint_R e^{-(x^2 + y^2)} dx dy\]
\[\because e^x = \exp (x)\]
\[= \lim_{a \to \infty} \iint_R \exp\left(-(x^2 + y^2)\right) dx dy\]
\[= \lim_{a \to \infty} \int_0^{2 \pi} \int_0^a \exp\left(-r^2\right) r dr d\theta\]
\[\because \frac d {dx} a^{bx} = a^{bx} \cdot \ln (a) \cdot \frac d {dx} (bx)\]
Also applying integration by subtitution
,1 we get
\[= \lim_{a \to \infty} \int_0^{2 \pi} \left[ -\frac {\exp(-r^2)}{2} \right]_0^{a} d\theta\]
\[= \lim_{a \to \infty} \int_0^{2 \pi} \left[-\frac {\exp(-a^2)}{2} - \frac 1 2 \right] d\theta\]
\[= \lim_{a \to \infty} \frac 1 2 \left[\left(1 - \exp(-a^2) \right) \theta \right]_0^{2 \pi}\]
\[
= \pi - \lim_{a \to \infty} \frac{\pi}{\exp (-a^2)} = \pi
\]
Theorem
Let \(G\) be a rectangular
region bounded by following
\[a \le x \le b\]
\[c \le y \le d\]
\[k \le z \le l\]
Then if \(f(x, y, z)\) is a continuous
2 function
3 then
\[
\iiint_{G} f(x, y, z) dV = \int_{a}^{b} \int_{c}^{d} \int_{k}^{\ell} f(x, y, z) dz \, dy \, dx
\]
And the order of integrals
4 can be changed.
Example
Evaluate
\[\iiint_S xyz \, dx dy dz\]
Where
\[S = \{(x, y, z) : x^2 + y^2 + z^2 \le 1, x \ge 0, y \ge 0, z \ge 0\}\]
Solution
\[\int_0^1\int_0^{\sqrt{1 - x^2}}\int_0^{\sqrt{1 - x^2 - y^2}} xyz \, dzdydx\]
\[= \int_0^1\int_0^{\sqrt{1 - x^2}}xy\left[\frac {z^2} 2\right]_0^{\sqrt{1 - x^2 - y^2}} \, dydx\]
Continue evaluating and we will get
\[= \frac 1 {48}\]
References
Read more about notations and symbols.
-
Read more about integration by substitution. ↩
-
Read more about continuity. ↩