Dated: 30-10-2024
Definite Integral
Wallis Sine Formula
When \(n\) is even
\[= \frac{n - 1}{n} \cdot \frac{n - 3}{n - 2} \cdot \ldots \cdot \frac 3 4 \cdot \frac 1 2 \cdot \frac \pi 2\]
When \(n\) is odd
\[\int_0^{\frac \pi 2} \sin^n(x)dx = \int_0^{\frac \pi 2} \cos^n(x)dx = \prod_{i = 0}^{\frac {n - 3} 2} \frac{n - 2i - 1}{n - 2i}\]
\[= \frac{n - 1}{n} \cdot \frac{n - 3}{n - 2} \cdot \ldots \cdot \frac 6 7 \cdot \frac 4 5 \cdot \frac 2 3\]
Integration by Parts
\[\int UVdx=U\int Vdx-\int\left(\int Vdx\cdot\frac{dU}{dx}\right)dx\]
Line Integrals
Let us say we have a curve \(C\) defined by \(f(x)\) and \(P\) be a point on this curve.
The position vector
1 for \(P\) with respect to origin
will be \(\vec P\) or let's say \(\vec r\).
Similarly, now imagine there is another point \(Q\) with position vector
1 \(\vec Q\)
where \(\vec Q = \vec P + \vec {PQ}\).
Let us say that \(\vec {PQ} = \vec dr\)
If we divide the curve \(f(x)\) into multiple sections then the length of whole curve will be a sum of lengths of each section.
\[\sum_{p = 1}^n dr_p\]
Here \(p\) is just an index
.
\[\lim_{dr \to 0} \sum_{p = 1}^n dr_p = \int_c dr\]
References
Read more about notations and symbols.