Skip to content

Dated: 30-10-2024

Definite Integral

Wallis Sine Formula

When \(n\) is even

\[= \frac{n - 1}{n} \cdot \frac{n - 3}{n - 2} \cdot \ldots \cdot \frac 3 4 \cdot \frac 1 2 \cdot \frac \pi 2\]

When \(n\) is odd

\[\int_0^{\frac \pi 2} \sin^n(x)dx = \int_0^{\frac \pi 2} \cos^n(x)dx = \prod_{i = 0}^{\frac {n - 3} 2} \frac{n - 2i - 1}{n - 2i}\]
\[= \frac{n - 1}{n} \cdot \frac{n - 3}{n - 2} \cdot \ldots \cdot \frac 6 7 \cdot \frac 4 5 \cdot \frac 2 3\]

Integration by Parts

\[\int UVdx=U\int Vdx-\int\left(\int Vdx\cdot\frac{dU}{dx}\right)dx\]

Line Integrals

Pasted image 20241017153458.png
Let us say we have a curve \(C\) defined by \(f(x)\) and \(P\) be a point on this curve.
The position vector1 for \(P\) with respect to origin will be \(\vec P\) or let's say \(\vec r\).
Similarly, now imagine there is another point \(Q\) with position vector1 \(\vec Q\)
where \(\vec Q = \vec P + \vec {PQ}\).
Let us say that \(\vec {PQ} = \vec dr\)

If we divide the curve \(f(x)\) into multiple sections then the length of whole curve will be a sum of lengths of each section.

\[\sum_{p = 1}^n dr_p\]

Here \(p\) is just an index.

\[\lim_{dr \to 0} \sum_{p = 1}^n dr_p = \int_c dr\]

References

Read more about notations and symbols.


  1. Read more about vectors