Dated: 30-10-2024
Fourier Series
The series
of trignometrical
functions
of the following form is called fourier series
.
\[f(x) = A_0 + c_1 \sin(x + \alpha_1) + c_2 \sin(2x + \alpha_2) + \ldots\]
\[= A_0 + \sum_{n=1}^\infty c_n \cdot \sin (n \cdot x + \alpha_n)\]
Here \(A_0\) is a constant
.
\(c_n\) denotes the amplitude
.
\(\alpha_n\) denotes auxiliary angles
.
We can expand the term \(c_n \cdot \sin (n \cdot x + \alpha_n)\) as follows
\[c_n \cdot \sin (n \cdot x + \alpha_n) = c_n(\sin (nx) \cdot \cos \alpha_n + \cos(nx) \cdot \sin(\alpha_n))\]
\[ = c_n\sin (nx) \cdot \cos \alpha_n + c_n \cos(nx) \cdot \sin(\alpha_n)\]
\[\text{Let } c_n \sin (nx) = a_n \text{ and } c_n \cos(nx) = b_n\]
Then the series
becomes
\[= A_0 + \sum_{n=1}^\infty (a_n \cos (nx) + b_n \sin(nx))\]
Coefficients of Fourier Series
\(A_0\)
To find \(A_0\), we will integrate
both sides of the series
.
\[f(x) = A_0 + \sum_{n=1}^\infty (a_n \cos (nx) + b_n \sin(nx))\]
\[\int_{- \pi}^\pi f(x)dx = \int_{- \pi}^\pi\left(A_0 + \sum_{n=1}^\infty (a_n \cos (nx) + b_n \sin(nx))\right)dx\]
\[= \int_{- \pi}^\pi A_0 dx + \sum_{n = 1}^\infty \left(\int_{- \pi}^\pi a_n \cos(nx)dx\int_{- \pi}^\pi b_n \sin (nx)dx\right)\]
\[= \left[A_0\right]_{- \pi}^\pi + \sum_{n = 0}^\infty (0 + 0)\]
\[\int_{-\pi}^\pi f(x) = 2 \pi \cdot A_0\]
\[A_0 = \frac 1 {2 \pi} \int_{- \pi}^\pi f(x)\]
\(a_n\)
To find \(a_n\), we will multiply \(f(x)\) by \(\cos(mx)\) and integrate
from \(- \pi\) to \(\pi\).
\[\int_{-\pi}^{\pi}f(x)\cos(mx)dx=\int_{-\pi}^{\pi}A_{0}\cos(mx)dx+\sum_{n=1}^{\infty}\left(\int_{-\pi}^{\pi}a_{n}\cos(nx)\cos(mx)dx+\int_{-\pi}^{\pi}b_{n}\sin(nx)\cos(mx)dx\right)\]
\[=0+a_{n}\pi+0=a_{n}\pi\quad\text{for}~n=m\]
\[\therefore a_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos(nx)dx\]
\(b_n\)
To find \(b_n\), we will repeat the same process but we will multiply by \(\sin(nx)\).
\[\therefore b_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin(nx)dx\]
Results of Fourier Series
-
\[a_0 = \frac 1 \pi \int_{- \pi}^\pi f(x) dx = 2 \times \text{mean value of } f(x)\]
-
\[a_n = \frac 1 \pi \int_{- \pi}^\pi f(x) \cos(nx) dx = 2 \times \text{mean value of } f(x)\cos(nx)\]
-
\[a_n = \frac 1 \pi \int_{- \pi}^\pi f(x) \sin(nx) dx = 2 \times \text{mean value of } f(x)\sin(nx)\]
-
\[A_0 = \frac 1 2 a_0\]
Example
Determine the fourier series for the following function
.
\[f(x) = \frac \pi 2 \text{ and } 0 < x < 2\pi\]
\[f(x) = f(x + 2 \pi)\]
Solution
We will now find the coefficients
.
\(a_0\)
\[a_{0}=\frac{1}{\pi}\int_{0}^{2\pi}f(x)dx\]
\[=\frac{1}{\pi}\int_{0}^{2\pi}\left(\frac{x}{2}\right)dx\]
\[=\frac{1}{4\pi}\left[x^{2}\right]_{0}^{2\pi}\]
\[=\pi\]
\(a_n\)
\[a_{n}=\frac{1}{\pi}\int_{0}^{2\pi}f(x)\cos(nx)dx\]
\[=\frac{1}{\pi}\int_{0}^{2\pi}\left(\frac{x}{2}\right)\cos(nx)dx\]
\[=\frac{1}{2\pi}\int_{0}^{2\pi}x~\cos(nx)dx\]
\[=\frac{1}{2\pi}\left(\left[\frac{x~\sin(nx)}{n}\right]_{0}^{2\pi}-\frac{1}{n}\int_{0}^{2\pi}\sin(nx)dx\right)\]
\[=\frac{1}{2\pi}\left((0-0)-\frac{1}{n}(0)\right)\]
\[= 0\]
\(b_n\)
\[b_{n}=\frac{1}{\pi}\int_{0}^{2\pi}f(x)\sin(nx)dx\]
\[b_{n}=\frac{1}{\pi}\int_{0}^{2\pi}\left(\frac{x}{2}\right)\sin(nx)dx\]
\[=\frac{1}{2\pi}\left(\left[\frac{x~\cos(nx)}{n}\right]_{0}^{2\pi}+\frac{1}{n}\int_{0}^{2\pi}\cos(nx)dx\right)\]
\[=\frac{1}{2\pi}\left(\left[\frac{x \cdot \cos(nx)}{n}\right]_{0}^{2\pi}+\frac{1}{n}\left[\frac{\sin(nx)}{n}\right]_{0}^{2\pi}\right)\]
\[=\frac{1}{2\pi}\left((2\pi-0)+(0-0)\right)\]
\[=\frac{1}{n}\]
The general expression for fourier series is
\[f(x)= \frac 1 2 a_0 + \sum_{n=1}^\infty (a_n \cos (nx) + b_n \sin(nx))\]
\[f(x) = \frac \pi 2 - \left(\sin (x) + \frac 1 2 \sin(2x) + \ldots\right)\]
Dirichlet Conditions
If the fourier series is represented as \(f(x)\) then \(f(x_1)\) will give an infinite series
of \(x_1\) which converges as more and more terms of the series
are evaluated.
For this to happen, following conditions should be satisfied
- \(f(x)\) must be defined and single valued.
- \(f(x)\) should be
continuous
or have a finite number of finite discontinuities
over the period
.
- \(f(x)\) and \(f^\prime(x)\) should be piecewise continuous
functions
in the periodic interval
.
Effect of Harmonics
As more and more terms of fourier series are evaluated, the graph
of the series
approaches the graph
of the original function
, the series
represents.
References
Read more about notations and symbols.