Dated: 30-10-2024
Functions
1 With Periods
2 other than \(2 \pi\)
There are sometimes functions
1 which have \(T\) period
2 which is other than \(2 \pi\).
We know that in physics, the oscillations are basically function
1 of time
and they repeat after \(T\) interval.
\[f(t) = f(t + T)\]
If the frequency
measured in hertz
(Hz) is defined as
\[f = \frac 1 T\]
and angular velocity
as
\[\omega = 2 \pi f\]
then
\[\omega = \frac {2 \pi}{T} \implies 2 \pi = \omega \cdot T\]
therefore, the angle
\(x\) at any given time \(t\) will be
\[x = \omega \cdot t\]
The fourier series
3 takes the form
\[f(t) = \frac 1 2 a_0 + \sum_{n = 1}^\infty \left(a_n \cos(n \omega t) + b_n \sin(n \omega t)\right)\]
Fourier Coefficients
\[a_{0}=\frac{2}{T}\int_{0}^{T}f(t)dt=\frac{\omega}{\pi}\int_{0}^{ \frac {2\pi}\omega}f(t)dt\]
\[a_{n}=\frac{2}{T}\int_{0}^{T}f(t)\cos(n\omega t)dt=\frac{\omega}{\pi}\int_{0}^{\frac{2\pi}\omega}f(t)\cos(n\omega t)dt\]
\[b_{n}=\frac{2}{T}\int_{0}^{T}f(t)\sin(n\omega t)dt=\frac{\omega}{\pi}\int_{0}^{\frac{2\pi}\omega}f(t)\sin(n\omega t)dt\]
Half Wave Rectifier
A sinusoidal
voltage \(E \sin (\omega t)\) is passed through a half wave rectifier
which clips the negative voltage onto the \(x\) axis.
Find the fourier series
3 for the resulting periodic function
.
\[u(t) = 0 \quad - \frac T 2 < t < 0\]
\[u(t) = E \sin (\omega t) \quad 0 < t < \frac T 2\]
Solution
\(a_0\)
\[a_{0}=\frac{2}{T}\int_{- \frac {T}2}^{\frac T 2}u(t)dt\]
\[=\frac{2}{T}\left(\int_{- \frac T 2}^{0}0~dt+\frac{E}{T}\int_{0}^{\frac T 2}\sin(\omega t)dt\right)\]
\[=\frac{2E}{T^{2}}\left[-\frac{1}{\omega}\cos(\omega t)\right]_{0}^{\frac T 2}\]
\[=\frac{2E}{\pi\omega}\left(1-\cos~\frac{\pi\omega T}{2}\right)\]
\[=\frac{\omega}{\pi}E\left|\frac{-\cos~\omega~t}{\omega}\right|_{0}^{\frac \pi \omega}\]
\[=\frac{2E}{\pi}\]
\(a_1\)
\[a_{n}=\frac{2}{T}\int_{\frac T 2}^{\frac T 2}u(t)\cos(n\omega t)dt\]
\[=\frac{2E}{T}\int_{0}^{\frac T 2}\sin(\omega t)\cos(n\omega t)dt\]
\[=\frac{\omega E}{2\pi}\int_{0}^{\frac {2\pi}\omega}2\sin(\omega t)\cos(n\omega t)dt\]
\[=\frac{\omega E}{2\pi}\int_{0}^{\frac \pi \omega}(\sin(1+n)\omega t+\sin(1-n)\omega t)dt\]
\[
a_n = \frac{\omega E}{2\pi} \left[ -\frac{\cos (1+n) \, \omega t}{(1+n) \omega} - \frac{\cos (1-n) \, \omega t}{(1-n) \omega} \right]_{0}^{\frac{\pi}{\omega}}
\]
\[
= \frac{\omega E}{2\pi} \left[ -\frac{\cos (1+n) \, \pi + 1}{(1+n)\omega} + \frac{-\cos (1-n) \, \pi + 1}{(1-n)\omega} \right]
\]
\[
= \frac{\omega E}{2\pi \omega} \left[ \frac{-\cos (1+n) \, \pi + 1}{(1+n)} + \frac{-\cos (1-n) \, \pi + 1}{(1-n)} \right]
\]
If \(n\) is Odd
\[a_n = 0\]
If \(n\) is even
\[a_n = \frac{E}{2\pi} \left( \frac{2}{1+n} + \frac{2}{1-n} \right) \]
\[= \frac{E}{2\pi} \left[ \frac{2 - 2n + 2 + 2n}{(1+n)(1-n)} \right] \]
\[= \frac{2E}{(1-n)(1+n)\pi}\]
\[
= \frac{2E}{(1-n^2)\pi}
\]
\(b_n\)
\[b_{n}=\frac{2}{T}\int_{-\frac T 2}^{\frac T 2}u(t)\sin(n\omega t)dt\]
\[=\frac{2E}{T}\int_{0}^{\frac T 2}\sin(\omega t)\sin(n\omega t)dt\]
\[=\frac{\omega E}{2\pi}\int_{0}^{\frac {2\pi}\omega}2\sin(\omega t)\sin(n\omega t)dt\]
\[=\frac{\omega E}{2\pi}\int_{0}^{\frac \pi \omega}\left(\cos(1+n)\omega t-\cos(1-n)\omega t\right)dt\]
If \(n = 1\)
\[b_n = - \frac{\omega E}{2 \pi} \int_0^{\frac \pi \omega} (\cos (2 \omega t) - 1)dx\]
\[= - \frac{\omega E}{2 \pi} \left|\frac{\sin (2 \omega t)}{2 \omega} - 1\right|_0 ^ {\frac \pi \omega}\]
\[= - \frac{\omega E}{2 \pi} \left(- \frac \pi \omega\right)\]
\[= \frac E 2\]
If \(n \ne 1\)
\[=-\frac{\omega E}{2\pi}\left[\frac{\sin(1+n)\omega t}{(1+n)\omega}-\frac{\sin(1-n)\omega t}{(1-n)\omega}\right]_{0}^{\frac \pi \omega}\]
\[=-\frac{\omega E}{2\pi}\left[\frac{\sin(1+n)\pi}{(1+n)\omega}-\frac{\sin(1-n)\pi}{(1-n)\omega}\right]\]
\[= 0\]
\[u(t)=\frac{1}{2}a_{0}+\sum_{n=2}^{\infty}a_{n}\cos(n\omega t)\]
\[u(t)=\frac{E}{\pi}+\frac{E}{2}\sin(\omega t)-\frac{2E}{\pi}\left(\frac 1 {1.3} \cos (2 \omega t) + \frac 1 {3.5} \cos (4 \omega t)+ \ldots\right)\]
References
Read more about notations and symbols.
-
Read more about periodic functions. ↩↩
-
Read more about fourier series. ↩↩