Skip to content

Dated: 30-10-2024

Functions1 With Periods2 other than \(2 \pi\)

There are sometimes functions1 which have \(T\) period2 which is other than \(2 \pi\).
We know that in physics, the oscillations are basically function1 of time and they repeat after \(T\) interval.

\[f(t) = f(t + T)\]

If the frequency measured in hertz (Hz) is defined as

\[f = \frac 1 T\]

and angular velocity as

\[\omega = 2 \pi f\]

then

\[\omega = \frac {2 \pi}{T} \implies 2 \pi = \omega \cdot T\]

therefore, the angle \(x\) at any given time \(t\) will be

\[x = \omega \cdot t\]

The fourier series3 takes the form

\[f(t) = \frac 1 2 a_0 + \sum_{n = 1}^\infty \left(a_n \cos(n \omega t) + b_n \sin(n \omega t)\right)\]

Fourier Coefficients

\[a_{0}=\frac{2}{T}\int_{0}^{T}f(t)dt=\frac{\omega}{\pi}\int_{0}^{ \frac {2\pi}\omega}f(t)dt\]
\[a_{n}=\frac{2}{T}\int_{0}^{T}f(t)\cos(n\omega t)dt=\frac{\omega}{\pi}\int_{0}^{\frac{2\pi}\omega}f(t)\cos(n\omega t)dt\]
\[b_{n}=\frac{2}{T}\int_{0}^{T}f(t)\sin(n\omega t)dt=\frac{\omega}{\pi}\int_{0}^{\frac{2\pi}\omega}f(t)\sin(n\omega t)dt\]

Half Wave Rectifier

A sinusoidal voltage \(E \sin (\omega t)\) is passed through a half wave rectifier which clips the negative voltage onto the \(x\) axis.
Find the fourier series3 for the resulting periodic function.

\[u(t) = 0 \quad - \frac T 2 < t < 0\]
\[u(t) = E \sin (\omega t) \quad 0 < t < \frac T 2\]

Solution

\(a_0\)

\[a_{0}=\frac{2}{T}\int_{- \frac {T}2}^{\frac T 2}u(t)dt\]
\[=\frac{2}{T}\left(\int_{- \frac T 2}^{0}0~dt+\frac{E}{T}\int_{0}^{\frac T 2}\sin(\omega t)dt\right)\]
\[=\frac{2E}{T^{2}}\left[-\frac{1}{\omega}\cos(\omega t)\right]_{0}^{\frac T 2}\]
\[=\frac{2E}{\pi\omega}\left(1-\cos~\frac{\pi\omega T}{2}\right)\]
\[=\frac{\omega}{\pi}E\left|\frac{-\cos~\omega~t}{\omega}\right|_{0}^{\frac \pi \omega}\]
\[=\frac{2E}{\pi}\]

\(a_1\)

\[a_{n}=\frac{2}{T}\int_{\frac T 2}^{\frac T 2}u(t)\cos(n\omega t)dt\]
\[=\frac{2E}{T}\int_{0}^{\frac T 2}\sin(\omega t)\cos(n\omega t)dt\]
\[=\frac{\omega E}{2\pi}\int_{0}^{\frac {2\pi}\omega}2\sin(\omega t)\cos(n\omega t)dt\]
\[=\frac{\omega E}{2\pi}\int_{0}^{\frac \pi \omega}(\sin(1+n)\omega t+\sin(1-n)\omega t)dt\]
\[ a_n = \frac{\omega E}{2\pi} \left[ -\frac{\cos (1+n) \, \omega t}{(1+n) \omega} - \frac{\cos (1-n) \, \omega t}{(1-n) \omega} \right]_{0}^{\frac{\pi}{\omega}} \]
\[ = \frac{\omega E}{2\pi} \left[ -\frac{\cos (1+n) \, \pi + 1}{(1+n)\omega} + \frac{-\cos (1-n) \, \pi + 1}{(1-n)\omega} \right] \]
\[ = \frac{\omega E}{2\pi \omega} \left[ \frac{-\cos (1+n) \, \pi + 1}{(1+n)} + \frac{-\cos (1-n) \, \pi + 1}{(1-n)} \right] \]
If \(n\) is Odd
\[a_n = 0\]
If \(n\) is even
\[a_n = \frac{E}{2\pi} \left( \frac{2}{1+n} + \frac{2}{1-n} \right) \]
\[= \frac{E}{2\pi} \left[ \frac{2 - 2n + 2 + 2n}{(1+n)(1-n)} \right] \]
\[= \frac{2E}{(1-n)(1+n)\pi}\]
\[ = \frac{2E}{(1-n^2)\pi} \]

\(b_n\)

\[b_{n}=\frac{2}{T}\int_{-\frac T 2}^{\frac T 2}u(t)\sin(n\omega t)dt\]
\[=\frac{2E}{T}\int_{0}^{\frac T 2}\sin(\omega t)\sin(n\omega t)dt\]
\[=\frac{\omega E}{2\pi}\int_{0}^{\frac {2\pi}\omega}2\sin(\omega t)\sin(n\omega t)dt\]
\[=\frac{\omega E}{2\pi}\int_{0}^{\frac \pi \omega}\left(\cos(1+n)\omega t-\cos(1-n)\omega t\right)dt\]
If \(n = 1\)
\[b_n = - \frac{\omega E}{2 \pi} \int_0^{\frac \pi \omega} (\cos (2 \omega t) - 1)dx\]
\[= - \frac{\omega E}{2 \pi} \left|\frac{\sin (2 \omega t)}{2 \omega} - 1\right|_0 ^ {\frac \pi \omega}\]
\[= - \frac{\omega E}{2 \pi} \left(- \frac \pi \omega\right)\]
\[= \frac E 2\]
If \(n \ne 1\)
\[=-\frac{\omega E}{2\pi}\left[\frac{\sin(1+n)\omega t}{(1+n)\omega}-\frac{\sin(1-n)\omega t}{(1-n)\omega}\right]_{0}^{\frac \pi \omega}\]
\[=-\frac{\omega E}{2\pi}\left[\frac{\sin(1+n)\pi}{(1+n)\omega}-\frac{\sin(1-n)\pi}{(1-n)\omega}\right]\]
\[= 0\]
\[u(t)=\frac{1}{2}a_{0}+\sum_{n=2}^{\infty}a_{n}\cos(n\omega t)\]
\[u(t)=\frac{E}{\pi}+\frac{E}{2}\sin(\omega t)-\frac{2E}{\pi}\left(\frac 1 {1.3} \cos (2 \omega t) + \frac 1 {3.5} \cos (4 \omega t)+ \ldots\right)\]

References

Read more about notations and symbols.


  1. Read more about functions

  2. Read more about periodic functions

  3. Read more about fourier series