Dated: 30-10-2024
Theorems
The First Shift Theorem
If \(\mathscr L (F(t)) = f(s)\) then \(\mathscr L (e^{-at} F(t)) = f(s + a)\).
Example
\[\mathscr L (t^2) = \frac 2 {s^3}\]
\[\mathscr L (t^2 e^{4t}) = \frac 2 {(s - 4)^3}\]
Here \(a = -4\).
Multiplying by \(t\)
If \(\mathscr L (F(t)) = f(s)\) then
\[\mathscr L (F(t)) = - \frac d {ds} (f(s))\]
Example
\[\mathscr L (\sin 2t) = \frac 2 {s^2 + 4}\]
\[\mathscr L (t \sin 2t) = -\frac d {ds} \left(\frac 2 {s^2 + 4}\right) = \frac {4s} {(s^2 + 4)^2}\]
This theorem can be extended to following
\[\mathscr{L}(t^{n}F(t))=(-1)^{n}\frac{d^{n}}{ds^{n}}(f(s))\]
Dividing by \(t\)
If \(\mathscr L (F(t)) = f(s)\) then
\[\mathscr L \left(\frac {F(t)} t\right) = \int_s^\infty f(s) ds\]
Example
Determine
\[\mathscr L \left(\frac{\sin (at)}{t}\right) = \frac a {s^2 + a^2}\]
\[\mathscr{L}\left(\frac{\sin(at)}{t}\right)\]
\[=\int_{s}^{\infty}\frac{a}{s^{2}+a^{2}}ds\]
\[=\left[\tan^{-1}\left(\frac{s}{a}\right)\right]_{s}^{\infty}\]
\[=\frac{\pi}{2}-\tan^{-1}\left(\frac{s}{a}\right)\]
\[=\tan^{-1}\left(\frac{a}{s}\right)\]
Inverse Transforms
\[\mathscr L (4) = \frac 4 s\]
\[\implies \mathscr L ^{-1} \left(\frac 4 s\right) = 4\]
But what about
\[\mathscr L ^{-1}\left(\frac{3s}{s^2 - s - 6}\right) = \mathscr L ^ {-1}\left(\frac{1}{s+2} + \frac{1}{s - 3}\right)\]
\[= \mathscr L ^ {-1}\left(\frac{1}{s + 2}\right) + \mathscr L ^ {-1}\left(\frac{1}{s - 3}\right)\]
\[= e^{-2t} + 2 e^{3t}\]
Rules of Partial Fractions
- The degree of
numerator
should be lower than degree ofdenominator
. - Factorize the
denominator
into itsprime factors
. This determines the shapes of thepartial fraction
. - A
linear
factor \((s + a)\) gives apartial fraction
\(\frac A {s + a}\). - A repeated factor \((s + a)^2\) gives a
partial fraction
\(\frac A {s + a} + \frac B {(s + a)^2}\). - Similarly, \((s + a)^3\) gives a
partial fraction
\(\frac A {s + a} + \frac B {(s + a)^2} + \frac C {(s + a)^3}\). - A
quadratic
factor \((s^2 + ps + q)\) gives \(\frac{Ps + Q}{s^2 + ps + q}\). - Similarly, \((s^2 + ps + q)^2\) gives \(\frac{Ps + Q}{s^2 + ps + q} + \frac{Rs + T}{(s^2 + ps + q)^2}\).
- \(\frac{s + a}{(s + b) (s + c)}\) has gives \(\frac{A}{s + b} + \frac{B}{s + c}\).
- \(\frac{s + a}{(s + b) (s + c)^2}\) has gives \(\frac{A}{s + b} + \frac{B}{s + c} + \frac{C}{(s + c)^2}\).
Example
Solve the following equation given that \(x(0) = 5\) and \(\frac{dx}{dt}\bigg|_{t = 0} = 7\)
\[\frac{d^2x}{dt^2} - 3 \frac{dx}{dt} + 2x = 2e^{3t}\]
\[x^{\prime \prime}(t) - 3x^\prime(t) + 2x(t) = 2e^{3t}\]
Taking the laplace transform
1 on both sides
\[\mathscr L (x^{\prime \prime}(t) - 3x^\prime(t) + 2x(t)) = \mathscr L (2e^{3t})\]
\[\mathscr {L}(x^{\prime\prime}(t))-3\mathscr{L}(x^{\prime}(t))+2\mathscr{L}(x(t))=2\mathscr{L}(e^{3t})\]
\[s^2\mathscr L (x(t)) - sx(0) - x^\prime(0) - 3\left(s \mathscr L (x(t)) - x(0)\right) + 2 \mathscr L (x(t)) = \frac 2 {(s - 3)}\]
Plugging the values in, we get
\[s^2 \mathscr L (x(t)) - s(7) - 7 - 3 \left(s \mathscr L (x(t)) + 3 (5)\right) + 2 \mathscr L (x(t)) = \frac 2 {s - 3}\]
\[s^{2}\mathscr{L}(x(t))-3s\mathscr{L}(x(t))+2\mathscr{L}(x(t))=\frac{2}{s-3}-8+5s\]
\[(s^{2}-3s+2)\mathscr{L}(x(t))=\frac{2-8s+24+5s^{2}-15s}{s-3}\]
\[\mathscr{L}(x(t))=\frac{5s^{2}-23s+24}{(s-1)(s-2)(s-3)}\]
After solving the partial fraction
, the coefficients we get are \(A = 3\), \(B = 2\) and \(C = 0\)
\[\mathscr{L}(x(t))=\frac{3}{s-1}+\frac{2}{s-2}+\frac{0}{s-3}\]
\[\mathscr{L}(x(t))=\frac{3}{s-1}+\frac{2}{s-2}\]
\[x(t)=\mathscr{L}^{-1}\left(\frac{3}{s-1}\right)+\mathscr{L}^{-1}\left(\frac{2}{s-2}\right)=3e^{t}+2e^{2t}\]
References
Read more about notations and symbols.
-
Read more about laplace transform. ↩