Dated: 30-10-2024
Limit of Multivariable Functions
\[f(x, y) = \sin^{^-1}(x + y)\]
The domain
1 of this function
1 is
\[-1 \le x + y \le 1\]
We can approach a point in space
with infinite paths as such
Rules for Non Existence of a Limit
If we have
\[\lim_{(x, y) \to (a, b)} f(x, y)\]
and the function
1 approaches different values as we use different paths then the limit
2 does not exist.
Rules for limits
2
If we have the following
\[\lim_{(x,y) \to (x_0,y_0)} f(x,y) = L_1\]
\[\lim_{(x,y) \to (x_0,y_0)} g(x,y) = L_2\]
then
-
\[\lim_{(x,y) \to (x_0,y_0)} cf(x,y) = cL_1; c \in \mathbb{R}\]
-
\[\lim_{(x,y) \to (x_0,y_0)} (f(x,y) + g(x,y)) = L_1 + L_2\]
-
\[\lim_{(x,y) \to (x_0,y_0)} (f(x,y) - g(x,y)) = L_1 - L_2\]
-
\[\lim_{(x,y) \to (x_0,y_0)} (f(x,y) \cdot g(x,y)) = L_1 \cdot L_2\]
-
\[\lim_{(x,y) \to (x_0,y_0)} \frac{f(x,y)}{g(x,y)} = \frac{L_1}{L_2}\]
-
\[\lim_{(x,y) \to (x_0,y_0)} c = c; c \in \mathbb{R}\]
References
Read more about notations and symbols.