Dated: 30-10-2024
Examples
Example 1
\(\(\frac{\partial x}{\partial r} = 3, \quad \frac{\partial x}{\partial s} = 4\)\)
\(\(\frac{\partial w}{\partial r} = \frac{dw}{dx} \cdot \frac{\partial x}{\partial r}\)\)
\(\(= (\cos{x} + 2x) \cdot 3\)\)
\(\(= 3\cos{(3r + 4s)} + 6(3r + 4s)\)\)
\(\(= 3\cos{(3r + 4s)} + 18r + 24s\)\)
\(\(\frac{\partial w}{\partial s} = \frac{dw}{dx} \cdot \frac{\partial x}{\partial s}\)\)
\(\(= (\cos{x} + 2x) \cdot 4\)\)
\(\(= 4\cos{x} + 8x\)\)
\(\(= 4\cos{(3r + 4s)} + 8(3r + 4s)\)\)
\(\(= 4\cos{(3r + 4s)} + 24r + 32s\)\)
Example 2
\(\(\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial s}\)\)
Chain Rule
1 For Functions
2 of Multiple Variables
Suppose \(w = f(x, y, \ldots, v)\) be a function
2 of multiple variables
, a finite set
3 and \(x, y, \ldots, v\) are themselves functions
2 of variables \(p, q, t\) etc, another finite set
.3
Then,
References
Read more about notations and symbols.