Lecture No. 13
Dated: 29-10-2024
Concatenation of Two Finite Automaton
1
Example
\[r_1 = (a + b)^* b\]
\[r_2 = (a + b)^* aa (a + b)^*\]
\(r_1\)
\(r_2\)
\(r_1r_2\)
For the finite automaton
1 of \(r_1r_2\), the initial state
should correspond to that of \(r_1\) and final state
with \(r_2\).
In a sense, the final state
of \(r_1\) is the initial state
of \(r_2\).
Old States | New States after reading | |
---|---|---|
a | b | |
\(z_1^- \equiv x_1\) | \(x_1 \equiv z_1\) | \((x_2, y_1) \equiv z_2\) |
\(z_2 \equiv (x_2, y_1)\) | \((x_1, y_2) \equiv z_3\) | \((x_2, y_1) \equiv z_2\) |
\(z_3 \equiv (x_1, y_2)\) | \((x_1, y_3) \equiv z_4\) | \((x_2, y_1) \equiv z_2\) |
\(z_4^+ \equiv (x_1, y_3)\) | \((x_1, y_3) \equiv z_4\) | \((x_2, y_1, y_3) \equiv z_5\) |
\(z_5^+ \equiv (x_2, y_1, y_3)\) | \((x_1, y_2, y_3) \equiv z_6\) | \((x_2, y_1, y_3) \equiv z_5\) |
\(z_6^+ \equiv (x_1, y_2, y_3)\) | \((x_1, y_3) \equiv z_4\) | \((x_2, y_1, y_3) \equiv z_5\) |
References
-
Read more about finite automaton. ↩↩