Skip to content

Lecture No. 14

Dated: 29-10-2024

Closure of a Finite Automaton1

It is concatenation of a finite automaton1 with itself.
The initial state is also the final state.

Example

\[r = (a + b)^* b\]

CS402_e_14_1.svg

\[r^* = ((a + b)^* b)^*\]

CS402_e_14_2.svg

Oldstate New state after reading
a b
\(z_1^\pm \equiv x_1\) \(x_1 \equiv z_2\) \((x_2, x_1) \equiv z_3\)
\(z_2 \equiv x_1\) \(x_1 \equiv z_2\) \((x_2, x_1) \equiv z_3\)
\(z_3^+ \equiv (x_2, x_1)\) \(x_1 \equiv z_2\) \((x_2, x_1) \equiv z_3\)

CS402_e_14_3.svg

Example

\[r = (a+b)^*aa(a + b)^*\]

CS402_e_14_4.svg

Old States New States after reading
a b
\(z_1^\pm \equiv y_1\) \(y_2 \equiv z_3\) \(y_1 \equiv z_2\)
\(z_2 \equiv y_1\) \(y_2 \equiv z_3\) \(y_1 \equiv z_2\)
\(z_3 \equiv y_2\) \((y_3, y_1) \equiv z_4\) \(y_1 \equiv z_2\)
\(z_4^+ \equiv (y_3, y_1)\) \((y_3, y_1, y_2) \equiv z_5\) \((y_3, y_1) \equiv z_4\)
\(z_5^+ \equiv (y_3, y_1, y_2)\) \((y_3, y_1, y_2) \equiv z_5\) \((y_3, y_1) \equiv z_4\)

CS402_e_14_5.svg

References


  1. Read more about finite automaton