Lecture No. 14
Dated: 29-10-2024
Closure of a Finite Automaton
1
It is concatenation of a finite automaton
1 with itself.
The initial state
is also the final state
.
Example
\[r = (a + b)^* b\]
\[r^* = ((a + b)^* b)^*\]
Oldstate | New state after reading | |
---|---|---|
a | b | |
\(z_1^\pm \equiv x_1\) | \(x_1 \equiv z_2\) | \((x_2, x_1) \equiv z_3\) |
\(z_2 \equiv x_1\) | \(x_1 \equiv z_2\) | \((x_2, x_1) \equiv z_3\) |
\(z_3^+ \equiv (x_2, x_1)\) | \(x_1 \equiv z_2\) | \((x_2, x_1) \equiv z_3\) |
Example
\[r = (a+b)^*aa(a + b)^*\]
Old States | New States after reading | |
---|---|---|
a | b | |
\(z_1^\pm \equiv y_1\) | \(y_2 \equiv z_3\) | \(y_1 \equiv z_2\) |
\(z_2 \equiv y_1\) | \(y_2 \equiv z_3\) | \(y_1 \equiv z_2\) |
\(z_3 \equiv y_2\) | \((y_3, y_1) \equiv z_4\) | \(y_1 \equiv z_2\) |
\(z_4^+ \equiv (y_3, y_1)\) | \((y_3, y_1, y_2) \equiv z_5\) | \((y_3, y_1) \equiv z_4\) |
\(z_5^+ \equiv (y_3, y_1, y_2)\) | \((y_3, y_1, y_2) \equiv z_5\) | \((y_3, y_1) \equiv z_4\) |
References
-
Read more about finite automaton. ↩↩