Skip to content

Lecture No. 23

Dated: 23-02-2025

cs402_e_23_1.svg

A sequential circuit

We will be dealing with electrical pulses which have 2 states, on or off.
The 2 points A and B can act as digit places.
Therefore, this machine has \(2^2 = 4\) states.

\[q_0 = (A = 0, B = 0) = (0, 0)\]
\[q_1 = (A = 0, B = 1) = (0, 1)\]
\[q_2 = (A = 1, B = 0) = (1, 0)\]
\[q_3 = (A = 1, B = 1) = (1, 1)\]

The transitions of this machine are determined using the following relations

\[\text{new } B = \text{old } A\]
\[\text{new } A = (\text {input}) \, \textbf{ NAND } \, (\text{old } A \, \textbf{ AND } \text{old } B)\]
\[\text{output } = (\text{input}) \, \textbf{ OR } \, (\text{old } B)\]
Old State Inputting 0 Inputting 1
State Output State Output
\(q_0 \equiv (0, 0)\) \((1, 0) \equiv q_2\) \(0\) \((1, 0) \equiv q_2\) \(1\)
\(q_1 \equiv (0, 1)\) \((1, 0) \equiv q_2\) \(1\) \((1, 0) \equiv q_2\) \(1\)
\(q_2 \equiv (1,0)\) \((1, 1) \equiv q_3\) \(0\) \((1, 1) \equiv q_3\) \(1\)
\(q_3 \equiv (1, 1)\) \((1, 1) \equiv q_3\) \(1\) \((0, 1) \equiv q_1\) \(1\)

cs402_e_23_2.svg

Corresponding transition diagram1

Running the string2 \(01101110\) on this machine.

Input 0 1 1 0 1 1 1 0
States \(q_0\) \(q_2\) \(q_3\) \(q_1\) \(q_2\) \(q_3\) \(q_1\) \(q_2\) \(q_3\)
Output 0 1 1 1 1 1 1 0

References


  1. Read more about transition diagrams

  2. Read more about strings