08. Bernoulli Equations
Dated: 10-11-2024
Any differential equation of the form
\[\frac{dy}{dx}+p(x)y=q(x)y^n\]
is called Bernoulli equation
.
Method of Solution
- For \(n = 0, 1\), the equation reduces to
first order linear differential equation
.1 - For \(n \ne 0, 1\) we divide by \(y^n\)
\[y^{-n}\frac{dy}{dx}+p(x)y^{1-n}=q(x)\]
- Substitute
\[v=y^{1-n}\]
Differentiate
2 with respect to \(x\).
\[v^\prime=(1-n)y^{-n}y^\prime\]
\[\frac{dv}{dx}+(1-n)p(x)v=(1-n)q(x)\]
After solving, we will get
\[y=v^{\frac{1}{1-n}}\]
if \(n > 0\) then we will add \(y = 0\) to the solution.
Example
\[\frac{dy}{dx}=y+y^3 \quad p(x) = -1, q(x) = 1, n = 3\]
Step 1
\[\frac{dy}{dx}-y=y^3\]
Step 2
Dividing by \(y^3\)
\[y^{-3}\frac{dy}{dx}-y^{-2}=1\]
Step 3
\[v=y^{1-3}=y^{-2}\]
Step 4
\[y^{-3}\frac{dy}{dx}=-\frac{1}{2}\left(\frac{dv}{dx}\right)\]
\[\frac{dv}{dx}+2v=-2\]
Step 5
\[u(x)=e^{\int2dx}=e^{2x}\]
Step 6
\[v=\frac{\int u(x)q(x)dx+c}{u(x)}=\frac{\int e^{2x}(-2)dx+c}{e^{2x}}\]
\[\because \int e^{2x}(-2)dx=-e^{2x}\]
\[v=\frac{-e^{2x}+C}{e^{2x}}=Ce^{-2x}-1\]
Step 7
\[y=\pm(Ce^{-2x}-1)^{-\frac{1}{2}}\]
Therefore the solutions are
\[
\begin{cases}
y=0 \\
y=\pm(Ce^{-2x}-1)^{-\frac{1}{2}}
\end{cases}
\]
Example
\[y(1+2xy)dx+x(1-2xy)dy=0\]
This equation is not
- Separable
3
- Homogeneous
4
- Exact
5
- Linear
1
- Bernoulli
6
After staring long enough, we notice that
\[u = 2xy\]
\[y = \frac u {2x}\]
\[\because dy = \frac{xdu - udx}{2x^2}\]
\[2u^2dx+(1-u)xdu=0\]
\[2\ln|x|-u^{-1}-\ln|u|=c\]
\[\ln|\frac{x}{2y}|=c+\frac{1}{2xy}\]
\[\frac{x}{2y}=c_{1}e^{\frac 1 {2xy}}\]
\[x=2c_{1}ye^{\frac 1 {2xy}}\]
Example
\[\frac{d^{2}y}{dx^{2}}=2x\left(\frac{dy}{dx}\right)^{2}\]
\[u = y^\prime\]
\[\frac{du}{dx}=y^{\prime\prime}\]
\[\frac{du}{dx}=2xu^2\]
\[\frac{du}{u^2}=2xdx\]
\[\int u^{-2}du=\int 2xdx\]
\[-u^{-1}=x^2+c_1\]
\[u^{-1}=\frac{1}{y'}\]
\[\frac{dy}{dx}=-\frac{1}{x^{2}+c_{1}^{2}}\]
\[dy=-\frac{dx}{x^{2}+c_{1}^{2}}\]
\[\int dy=-\int \frac{dx}{x^{2}+c_{1}^{2}}\]
\[y+c_{2}=-\frac{1}{c_{1}}\tan^{-1}\frac{x}{c_{1}}\]
References
Read more about notations and symbols.
-
Read more about first order differential equation. ↩↩
-
Read more about differentiation. ↩
-
Read more about separable equations. ↩
-
Read more about homogeneous differential equations. ↩
-
Read more about exact differential equations. ↩
-
Read more about bernoulli equation. ↩