Skip to content

08. Bernoulli Equations

Dated: 10-11-2024

Any differential equation of the form

\[\frac{dy}{dx}+p(x)y=q(x)y^n\]

is called Bernoulli equation.

Method of Solution

  • For \(n = 0, 1\), the equation reduces to first order linear differential equation.1
  • For \(n \ne 0, 1\) we divide by \(y^n\)
\[y^{-n}\frac{dy}{dx}+p(x)y^{1-n}=q(x)\]
  • Substitute
\[v=y^{1-n}\]
  • Differentiate2 with respect to \(x\).
\[v^\prime=(1-n)y^{-n}y^\prime\]
\[\frac{dv}{dx}+(1-n)p(x)v=(1-n)q(x)\]

After solving, we will get

\[y=v^{\frac{1}{1-n}}\]

if \(n > 0\) then we will add \(y = 0\) to the solution.

Example

\[\frac{dy}{dx}=y+y^3 \quad p(x) = -1, q(x) = 1, n = 3\]

Step 1

\[\frac{dy}{dx}-y=y^3\]

Step 2

Dividing by \(y^3\)

\[y^{-3}\frac{dy}{dx}-y^{-2}=1\]

Step 3

\[v=y^{1-3}=y^{-2}\]

Step 4

\[y^{-3}\frac{dy}{dx}=-\frac{1}{2}\left(\frac{dv}{dx}\right)\]
\[\frac{dv}{dx}+2v=-2\]

Step 5

\[u(x)=e^{\int2dx}=e^{2x}\]

Step 6

\[v=\frac{\int u(x)q(x)dx+c}{u(x)}=\frac{\int e^{2x}(-2)dx+c}{e^{2x}}\]
\[\because \int e^{2x}(-2)dx=-e^{2x}\]
\[v=\frac{-e^{2x}+C}{e^{2x}}=Ce^{-2x}-1\]

Step 7

\[y=\pm(Ce^{-2x}-1)^{-\frac{1}{2}}\]

Therefore the solutions are

\[ \begin{cases} y=0 \\ y=\pm(Ce^{-2x}-1)^{-\frac{1}{2}} \end{cases} \]

Example

\[y(1+2xy)dx+x(1-2xy)dy=0\]

This equation is not - Separable3 - Homogeneous4 - Exact5 - Linear1 - Bernoulli6

After staring long enough, we notice that

\[u = 2xy\]
\[y = \frac u {2x}\]
\[\because dy = \frac{xdu - udx}{2x^2}\]
\[2u^2dx+(1-u)xdu=0\]
\[2\ln|x|-u^{-1}-\ln|u|=c\]
\[\ln|\frac{x}{2y}|=c+\frac{1}{2xy}\]
\[\frac{x}{2y}=c_{1}e^{\frac 1 {2xy}}\]
\[x=2c_{1}ye^{\frac 1 {2xy}}\]

Example

\[\frac{d^{2}y}{dx^{2}}=2x\left(\frac{dy}{dx}\right)^{2}\]
\[u = y^\prime\]
\[\frac{du}{dx}=y^{\prime\prime}\]
\[\frac{du}{dx}=2xu^2\]
\[\frac{du}{u^2}=2xdx\]
\[\int u^{-2}du=\int 2xdx\]
\[-u^{-1}=x^2+c_1\]
\[u^{-1}=\frac{1}{y'}\]
\[\frac{dy}{dx}=-\frac{1}{x^{2}+c_{1}^{2}}\]
\[dy=-\frac{dx}{x^{2}+c_{1}^{2}}\]
\[\int dy=-\int \frac{dx}{x^{2}+c_{1}^{2}}\]
\[y+c_{2}=-\frac{1}{c_{1}}\tan^{-1}\frac{x}{c_{1}}\]

References

Read more about notations and symbols.


  1. Read more about first order differential equation

  2. Read more about differentiation

  3. Read more about separable equations

  4. Read more about homogeneous differential equations

  5. Read more about exact differential equations

  6. Read more about bernoulli equation