Skip to content

14. Solutions to Higher order Linear Equations

Dated: 22-11-2024

Preliminary Theory

In order to solve an \(nth\) order non-homogenous linear differential equation

\[a_{n}(x)\frac{d^{n}y}{dx^{n}}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdot\cdot\cdot+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=g(x)\]

We first solve for

\[a_{n}(x)\frac{d^{n}y}{dx^{n}}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdot\cdot\cdot+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=0\]

Super Position

Suppose \(y_1, y_2, \ldots, y_n\) are solutions on the interval \(I\) for

\[a_{n}(x)\frac{d^{n}y}{dx^{n}}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdot\cdot\cdot+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=0\]

then the following is also a solution.

\[y=c_{1}y_{1}(x)+c_{2}y_{2}(x)+\cdot\cdot\cdot+c_{n}y_{n}(x)\]

where \(c_1, c_2, c_n\) are arbitrary constants.

Notes

  • If \(y_1(x)\) is a solution to homogeneous linear differential equation1 then \(y = cy_1(x)\) is also a solution.
  • Homogeneous linear differential equations1 always possess trivial solution \(y = 0\).
  • The super position principle does not holds for non linear differential equations.2

Example

The functions3

\[y_1 = e^x\]
\[y_2 = c^{2x}\]
\[y_3 = e^{3x}\]

satisfy the homogeneous differential equation1

\[\frac{d^{3}y}{dx^{3}}-6\frac{d^{2}y}{dx^{2}}+11\frac{dy}{dx}-6y=0\]

on \((- \infty, \infty)\).
This \(y_1, y_2, y_3\) are all solutions.
Now suppose

\[y=c_{1}e^{x}+c_{2}e^{2x}+c_{3}e^{3x}\]

Then

\[\frac{dy}{dx}=c_{1}e^{x}+2c_{2}e^{2x}+3c_{3}e^{3x}\]
\[\frac{d^{2}y}{dx^{2}}=c_{1}e^{x}+4c_{2}e^{2x}+9c_{3}e^{3x}\]
\[\frac{d^{3}y}{dx^{3}}=c_{1}e^{x}+8c_{2}e^{2x}+27c_{3}e^{3x}\]

Therefore

\[\frac{d^{3}y}{dx^{3}}-6\frac{d^{2}y}{dx^{2}}+11\frac{dy}{dx}-6y=c_{1}(e^{x}-6e^{x}+11e^{x}-6e^{x})+c_{2}(8e^{2x}-24e^{2x}+22e^{2x}-6e^{2x}) + c_3(27e^{3x} - 54e^{3x} + 33e^{3x} - 6e^{3x})\]
\[=c_{1}(12-12)e^{x}+c_{2}(30-30)e^{2x}+c_{3}(60-60)e^{3x}\]

\(\(= 0\)\)

Therefore,

\[y=c_{1}e^{x}+c_{2}e^{2x}+c_{3}e^{3x}\]

is also a solution.

The Wronskian

Suppose that \(y_1, y_2\) are solutions on interval4 \(I\) of the following.

\[a_{2}\frac{d^{2}y}{dx^{2}}+a_{1}\frac{dy}{dx}+a_{0}y=0\]

Then either

\[W(y_1, y_2) = 0, \forall x \in I\]

or

\[W(y_1, y_2) \ne 0, \forall x \in I\]

To verify this, we write

\[\frac{d^{2}y}{dx^{2}}+P\frac{dy}{dx}+Qy=0\]
\[W(y_{1},y_{2})=\begin{vmatrix}y_{1}&y_{2}\\ y_{1}^{\prime}&y_{2}^{\prime}\end{vmatrix}=y_{1}y_{2}^{\prime}-y_{1}^{\prime}y_{2}\]
\[\implies \frac{dW}{dx} = y_1y_2^{\prime\prime} - y_1^{\prime\prime}y_2\]

We the re-write the equation in the following form

\[y_{1}^{\prime\prime}+Py_{1}^{\prime}+Qy_{1}=0\]
\[y_{2}^{\prime\prime}+Py_{2}^{\prime}+Qy_{2}=0\]

Multiplying first equation by \(y_2\) and second equation by \(y_1\), we have

\[y_{1}^{\prime\prime}y_{2}+Py_{1}^{\prime}y_{2}+Qy_{1}y_{2}=0\]
\[y_{1}y_{2}^{\prime\prime}+Py_{1}y_{2}^{\prime}+Qy_{1}y_{2}=0\]

Subtracting both, we have

\[(y_{1}y_{2}^{\prime\prime}-y_{2}y_{1}^{\prime\prime})+P(y_{1}y_{2}^{\prime}-y_{1}^{\prime}y_{2})=0\]

Which can be re-written as

\[\frac {dW}{dx} + PW = 0\]

And its solution is

\[W=ce^{-\int Pdx}\]

Therefore

  • If \(c \ne 0\) then \(W(y_1, _2) \ne 0, \quad \forall x \in I\).
  • If \(c = 0\) then \(W(y_1, y_2) = 0, \quad \forall x \in I\).

In General

If \(y_1, y_2, \ldots, y_n\) are solutions on interval4 \(I\) for

\[a_{n}(x)\frac{d^{n}y}{dx^{n}}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdot\cdot\cdot+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=0\]

Then

\[W(y_{1},y_{2},…,y_{n})=0, \forall x\in I\]

or

\[W(y_{1},y_{2},…,y_{n})\neq 0, \forall x\in I\]

Fundamental Set of Solutions

A set5 \(\{y_1, y_2, \ldots, y_n\}\) of \(n\) linearly independent solutions6 on interval4 \(I\) for

\[a_{n}(x)\frac{d^{n}y}{dx^{n}}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdot\cdot\cdot+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=0\]

is called fundamental set of solutions on the interval4 \(I\).

Existence of Fundamental Set of Solutions

There always exists the fundamental set of solutions for equations of the form

\[a_{n}(x)\frac{d^{n}y}{dx^{n}}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdot\cdot\cdot+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=0\]

on interval4 \(I\).

General Solution for Homogeneous Equations

Suppose that

\[\{y_1, y_2, \ldots, y_n\}\]

is a fundamental set of solutions on the interval4 \(I\) for the equations

\[a_{n}(x)\frac{d^{n}y}{dx^{n}}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdot\cdot\cdot+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=0\]

Then the general solution on the interval4 \(I\) is defined to be

\[y=c_{1}y_{1}(x)+c_{2}y_{2}(x)+\ldots+c_{n}y_{n}(x)\]

Where \(c_1, c_2, \ldots, c_n\) are arbitrary constants.

Example

Consider the equation

\[\frac{d^{3}y}{dx^{3}}-6\frac{d^{2}y}{dx^{2}}+11\frac{dy}{dx}-6y=0\]

and suppose that

\[y_1 = e^x\]
\[y_2 = e^{2x}\]
\[y_3 = e^{3x}\]

Then

\[\frac{dy_{1}}{dx}=e^{x}=\frac{d^{2}y_{1}}{dx^{2}}=\frac{d^{3}y_{1}}{dx^{3}}\]

Therefore

\[\frac{d^{3}y_{1}}{dx^{3}}-6\frac{d^{2}y_{1}}{dx^{2}}+11\frac{dy_{1}}{dx}-6y_{1}=12e^{x}-12e^{x}=0\]

Now for \(x \in \mathbb R\).

\[W(e^{x},e^{2x},e^{3x})=\begin{vmatrix}e^{x}&e^{2x}&e^{3x}\\ e^{x}&2e^{2x}&3e^{3x}\\ e^{x}&4e^{2x}&9e^{3x}\end{vmatrix}=2e^{6x}\neq0\forall x\in I\]

Therefore, \(y_1, y_2\) and \(y_n\) form a fundamental solution of the differential equation on \((- \infty, \infty)\).

\[y = c_1e^{x} + c_2e^{2x} + c_3e^{3x}\]

Non Homogeneous Equations

A function3 \(y_p\) that satisfied the non-homogeneous differential equation.

\[a_{n}(x)\frac{d^{n}y}{dx^{n}}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\cdot\cdot\cdot+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=g(x)\]

and is free of parameters is called the particular solution of differential equation.

Example

Suppose that

\[y_p = 3\]

Then

\[y_p^{\prime\prime} = 0\]

So that

\[y_p^{\prime\prime} + 9 y_p = 0 + 9(3)\]
\[= 27\]

Therefore

\[y_p = 3\]

is the particular solution of the differential equation

\[y_p^{\prime\prime} + 9y_p = 27\]

Complementary Function

The general solution

\[y=c_{1}y_{1}+c_{2}y_{2}+\ldots+c_{n}y_{n}\]

of the homogeneous linear differential equation

\[a_{n}(x)\frac{d^{n}y}{dx^{n}}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\ldots+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=0\]

is known as the complmentary function for the non-homogeneous linear differential equation.

\[a_{n}(x)\frac{d^{n}y}{dx^{n}}+a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}}+\ldots+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=g(x)\]

General Solution of Non-homogeneous Equations

\[\text{general solution} = \text{complementary solution} + \text{any particular solution}\]

Example

Suppose that

\[y_p = - \frac {11}{12} - \frac 1 2 x\]

Then

\[y_p^\prime = - \frac 1 2, y_p^{\prime\prime} = y_p^{\prime\prime\prime} = 0\]
\[\therefore \frac{d^{3}y_{p}}{dx^{3}}-6\frac{d^{2}y_{p}}{dx^{2}}+11\frac{dy_{p}}{dx}-6y_{p}=0-0-\frac{11}{2}+\frac{11}{2}+3x=3x\]

Therefore, \(y_p\) is the solution of non-homogeneous linear equation above.
Now consider

\[y_{c}=c_{1}e^{x}+c_{2}e^{2x}+c_{3}e^{3x}\]

Therefore

\[\frac{dy_{c}}{dx}=c_{1}e^{x}+2c_{2}e^{2x}+3c_{3}e^{3x}\]
\[\frac{d^{2}y_{c}}{dx^{2}}=c_{1}e^{x}+4c_{2}e^{2x}+9c_{3}e^{3x}\]
\[\frac{d^{3}y_{c}}{dx^{3}}=c_{1}e^{x}+8c_{2}e^{2x}+27c_{3}e^{3x}\]
\[\frac{d^{3}y_{c}}{dx^{3}}-6\frac{d^{2}y_{c}}{dx^{2}}+11\frac{dy_{c}}{dx}-6y_{c} =c_{1}e^{x}+8c_{2}e^{2x}+27c_{3}e^{3x}-6(c_{1}e^{x}+4c_{2}e^{2x}+9c_{3}e^{3x}) +11(c_{1}e^{x}+2c_{2}e^{2x}+3c_{3}e^{3x})-6(c_{1}e^{x}+c_{2}e^{2x}+c_{3}e^{3x})\]
\[=12c_{1}e^{x}-12c_{1}e^{x}+30c_{2}e^{2x}-30c_{2}e^{2x}+60c_{3}e^{3x}-60c_{3}e^{3x}\]
\[=0\]

Thus, \(y_c\) is the general solution of associated homogeneous differential equation.

\[\frac{d^{3}y}{dx^{3}}-6\frac{d^{2}y}{dx^{2}}+11\frac{dy}{dx}-6y=0\]

Hence the general solution for non-homogeneous equation is

\[y=y_{c}+y_{p}=c_{1}e^{x}+c_{2}e^{2x}+c_{3}e^{3x}-\frac{11}{12}-\frac{1}{2}x\]

Super Position Principle for Non-homogeneous Equations

Suppose that

\[y_{p_1}, y_{p_2}, \ldots, y_{p_k}\]

denotes the particular solutions of the \(k\) differential equation.

\[a_{n}(x)y^{(n)}+a_{n-1}(x)y^{(n-1)}+\cdot\cdot\cdot+a_{1}(x)y^{\prime}+a_{0}(x)y=g_{i}(x)\]

where \(i = 1, 2, \ldots, k\) on an interval4 \(I\).
Then

\[y_p = y_{p_1}(x) + y_{p_2}(x) + \cdots + y_{p_k}(x)\]

is a particular solution for

\[a_{n}(x)y^{(n)}+a_{n-1}(x)y^{(n-1)}+\cdot\cdot\cdot+a_{1}(x)y^{\prime}+a_{0}(x)y=g_{1}(x)+g_{2}(x)+\cdot\cdot\cdot+g_{k}(x)\]

Example

Consider the differential equation

\[y^{\prime\prime}-3y^{\prime}+4y=-16x^{2}+24x-8+2e^{2x}+2xe^{x}-e^{x}\]

Suppose that

\[y_{p_1} = - 4x^2\]
\[y_{p_2} = e^{2x}\]
\[y_{p_3} = xe^x\]

Then

\[y_{p_1}^{\prime\prime}-3y_{p_1}^{\prime}+4y_{p_1}=-8+24x-16x^{2}\]

Therefore

\[y_{p_1}=-4x^{2}\]

is a particular solution of the non homogeneous differential equation

\[y^{\prime\prime}-3y^{\prime}+4y=-16x^{2}+24x-8\]
\[y_{p_2} = e^{2x}\]
\[y_{p_3} = xe^x\]

are particular solutions for

\[y^{\prime\prime}-3y^{\prime}+4y=2e^{2x}\]

and

\[y^{\prime\prime}-3y^{\prime}+4y=2xe^{x}-e^{x}\]

respectively.
Hence,

\[y=y_{p_1}+y_{p_2}+y_{p_3}=-4x^{2}+e^{2x}+xe^{x}\]

is the solution of the differential equation

\[y^{\prime\prime}-3y^{\prime}+4y=-16x^{2}+24x-8+2e^{2x}+2xe^{x}-e^{x}\]

References

Read more about notations and symbols.


  1. Read more about homogeneous differential equations

  2. Read more about linear differential equations

  3. Read more about functions

  4. Read more about intervals

  5. Read more about sets

  6. Read more about linear dependence