Skip to content

15. Construction of a Second Solution

Dated: 28-11-2024

General case

Consider the differential equation

\[a_{2}(x)\frac{d^{2}y}{dx^{2}}+a_{1}(x)\frac{dy}{dx}+a_{0}(x)y=0\]

Divide the above equation by \(a_2(x)\) to convert this into the form

\[y^{\prime\prime}+P(x)y'+Q(x)y=0\]

Where \(P(x)\) and \(Q(x)\) are continuous1 on the interval2 \(I\).
Suppose that \(y_1(x) \ne 0, \forall x \in I\) is a solution to the above differential equation then

\[y_1^{\prime\prime}+P(x)y_1'+Q(x)y_1=0\]

We define \(y = u(x) y_1(x)\) then

\[y^\prime = uy^\prime_1 + y_1u^\prime\]
\[y^{\prime\prime} = uy^{\prime\prime}_1 + 2y^{\prime}_1u^{\prime} + y_1u^{\prime\prime}\]
\[y^{\prime\prime} + Py^\prime + Qy = u(y_1^{\prime\prime} + Py_1^\prime + Qy_1) + y_1u^{\prime\prime} + (2 y_1^\prime + Py_1)u^\prime = 0\]
\[\because y_1^{\prime\prime}+P(x)y_1'+Q(x)y_1=0\]
\[\therefore y_1u^{\prime\prime} + (2 y_1^\prime + Py_1)u^\prime = 0\]

Suppose \(w = u^\prime\), then

\[y_1w^\prime + (2y_1^\prime + Py_1)w = 0\]

Separating the variables, we have

\[\frac {dw}{w} + \left(2 \frac {y_1^\prime}{y_1} + P\right)dx = 0\]

Integrating3 it

\[ \ln|w| + 2\ln|y_1| = -\int Pdx + c \]
\[ \ln|w(y_1)^2| = -\int Pdx + c \]
\[ w(y_1)^2 = c_1e^{-\int Pdx} \]
\[ w = \frac{c_1e^{-\int Pdx}}{(y_1)^2} \]
\[\because w = u^\prime\]
\[ u^\prime = \frac{c_1e^{-\int Pdx}}{(y_1)^2} \]

Therefore, we integrate3 again.

\[u = c_1\int \frac{e^{-\int Pdx}}{(y_1)^2}dx + c_2\]
\[\therefore y = u(x)y_{1}(x) = c_{1}y_{1}(x)\int\frac{e^{-\int Pdx}}{y_{1}^{2}}dx + c_{2}y_{1}(x)\]

Choosing \(c_1 = 1\) and \(c_2 = 0\), we obtain

\[y_{2}=y_{1}(x)\int\frac{e^{-\int Pdx}}{(y_{1})^{2}}dx\]

The Woolskin

\[W(y_1(x), y_2(x)) = \begin{vmatrix} y_1 & y_1 \int{\frac{e^{- \int Pdx}}{(y_1)^2}dx} \\ (y_1)^\prime & \frac{e^{-\int Pdx}}{y_{1}}+y_{1}^{\prime}\int\frac{e^{-\int Pdx}}{{y_{1}}^{2}}dx \end{vmatrix} \]
\[= e^{- \int P dx} \ne 0, \forall x\]

Therefore, \(y_1(x)\) and \(y_2(x)\) are linearly independent4 and the general solution5 is

\[y(x) = c_1y_1(x) + c_2y_2(x)\]

Example

Given that

\[y_1 = x^2\]

is a solution of

\[x^2y^{\prime\prime} - 3xy^{\prime} + 4y = 0\]

Find the general solution5 of the differential equation on the interval2 \((0, \infty)\).

Solution

The equation can be written as

\[y''-\frac{3}{x}y'+\frac{4}{x^{2}}y=0\]

The second solution \(y_2\) is given by

\[y_{2}=y_{1}(x)\int\frac{e^{-\int Pdx}}{y_{1}^{2}}dx\]
\[y_{2}=x^{2}\int\frac{e^{\int\frac{3}{x}dx}}{x^{4}}dx=x^{2}\int\frac{e^{\ln x^{3}}}{x^{4}}dx\]
\[y_{2}=x^{2}\int\frac{1}{x}dx=x^{2}\ln x\]

Hence the general solution5 is

\[y = c_1x^2 + c_2x^2 \ln (x)\]

Order Reduction

Given that

\[y_1 = x^3\]

is the solution of differential equation

\[x^2y^{\prime\prime} - 6y = 0\]

Find the second solution of the equation

Solution

Rewrite the equation into

\[y^{\prime\prime}-\frac{6}{x^{2}}y=0\]

So that

\[P(x)=-\frac{6}{x^{2}}\]
\[y_{2}=y_{1}\int\frac{e^{-\int Pdx}}{y_{1}^{2}}dx\]
\[y_{2}=x^{3}\int\frac{e^{-\int \frac{6}{x^{2}}dx}}{x^{6}}dx\]
\[y_{2}=x^{3}\int\frac{e^{\frac{6}{x}}}{x^{6}}dx\]

Therefore, using the formula

\[y_{2}=y_{1}\int\frac{e^{-\int Pdx}}{(y_{1})^{2}}dx\]

This integral3 is hard to find therefore, we use an alternative approach.
Let

\[y = u(x)y_1(x)\]
\[y = u(x)x^3\]

Then

\[y^{\prime}=3x^{2}u+x^{3}u^{\prime}\]
\[y^{\prime\prime}=x^3u^{\prime\prime}+6x^2u^\prime+6xu\]

Therefore

\[x^{2}y^{\prime\prime}-6y=0\]
\[x^2(x^3u^{\prime}+6x^2u^{\prime}+6xu)-6ux^3=0\]
\[x^5u^{\prime\prime}+6x^4u^\prime=0\]
\[u^{\prime\prime}+\frac{6}{x}u^\prime=0\]

Then if we take \(w = u^\prime\)

\[w^\prime + \frac 6 x w = 0\]

Finding the integrating factor6

\[u(x)=e^{\int \frac{1}{x}dx}=e^{6\ln x}=x^{6}\]

Therefore

\[x^6w'+6x^5w=0\]
\[\frac{d}{dx}(x^6w)=0\]

After integration,3 we have

\[x^6w=c_1\]
\[u'=\frac{c_1}{x^6}\]

Integrating3 again

\[u=-\frac{c_{1}}{5x^{5}}+c_{2}\]
\[y=ux^{3}=\frac{-c_{1}}{5x^{2}}+c_{2}x^{3}\]

Choosing \(c_2 = 0\) and \(c_1 = -5\), we obtain the second solution

\[y_2 = \frac 1 {x^2}\]

Hence the general solution5 is

\[y=c_{1}x^{3}+c_{2}\left(\frac{1}{x^{2}}\right)\]

References

Read more about notations and symbols.


  1. Read more about continuity

  2. Read more about intervals

  3. Read more about integration

  4. Read more about linear dependence

  5. Read more about general solution

  6. Read more about integrating factor