Skip to content

11. 2D Transformations 1

Dated: 12-05-2025

Basic Transformations

Geometric transformations involve changing

  • Position
  • Orientation
  • Size

Translation

Changing position is called translation.
If an object is at coordinates \(O = (x, y)\), we can write it in vector1 form as \(\vec O = \langle x, y\rangle\) or even in matrix2 form

\[ \textbf{O} = \begin{bmatrix} x \\ y \end{bmatrix} \]

After moving the object, the new coordinates are

\[ \textbf{O}^\prime = \begin{bmatrix} x^\prime \\ y^\prime \end{bmatrix} \]
\[\textbf{O}^\prime = \textbf{O} + \textbf{T}\]

Where \(\textbf{T}\) is the amount of units \(\textbf{O}\) changes.

\[ \textbf{T} = \begin{bmatrix} t_x \\ t_y \end{bmatrix} \]

Rotation

Changing orientation is called rotation.
Imagine an object, initially at \(\vec P = \langle x, y\rangle\) where \(\vec P\) makes an angle \(\Phi\) with respect to \(x\) axis.

cs602_e_11_1.svg

Orientation after rotating \(\theta\) angle

\(|\vec P| = |\vec{P^\prime}|\) as they are position vectors.1

\[ \vec P = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} |\vec P| \cos(\Phi) \\ |\vec P| \sin(\Phi) \\ \end{bmatrix} \]
\[\Downarrow\]
\[ \vec P^\prime = \begin{bmatrix} x^\prime \\ y^\prime \end{bmatrix} = \begin{bmatrix} |\vec P| \cos(\theta + \Phi) \\ |\vec P| \sin(\theta + \Phi) \\ \end{bmatrix} \]
\[ = \begin{bmatrix} |\vec P|\left(\cos \Phi \cos \theta - \sin \Phi \sin \theta\right)\\ |\vec P|\left(\cos \Phi \sin \theta + \sin \Phi \cos \theta\right) \end{bmatrix} \]
\[ = \begin{bmatrix} |\vec P|\cos \Phi \cos \theta - |\vec P|\sin \Phi \sin \theta\\ |\vec P|\cos \Phi \sin \theta + |\vec P|\sin \Phi \cos \theta \end{bmatrix} \]
\[ = \begin{bmatrix} x\cos \theta - y\sin \theta\\ y\cos \theta + x\sin \theta \end{bmatrix} \]
\[ = \begin{bmatrix} x\cos \theta - y\sin \theta\\ x\sin \theta + y\cos \theta \end{bmatrix} \]
\[ = \begin{bmatrix} x\cos \theta + y(-\sin \theta)\\ x\sin \theta + y\cos \theta \end{bmatrix} \]
\[ = \begin{bmatrix} x \cos \theta\\ x \sin \theta\\ \end{bmatrix} + \begin{bmatrix} y (-\sin \theta)\\ y \cos \theta\\ \end{bmatrix} \]
\[ = x \begin{bmatrix} \cos \theta\\ \sin \theta\\ \end{bmatrix} + y \begin{bmatrix} -\sin \theta\\ \cos \theta\\ \end{bmatrix} \]
\[ = \begin{bmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]
\[\vec P^\prime = \textbf R \cdot \vec P\]

Scaling

Changing size is called scaling.

\[\vec P^\prime = \textbf S \cdot \vec P\]
\[ \begin{bmatrix} x^\prime \\ y^\prime \end{bmatrix} = \begin{bmatrix} S_x & 0\\ 0 & S_y \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} \]
\[ \begin{aligned} x^\prime = x S_x \\ y^\prime = y S_y \end{aligned} \]

References


  1. Read more about vectors

  2. Read more about matrices