36. Space Curves
Dated: 05-07-2025
\[\vec x(u) = a_x u^3 + b_x u^2 + c_xu + d_x\]
Similarly, \(\vec y(u)\) and \(\vec z(u)\) will be
\[\vec y(u) = a_y u^3 + b_y u^2 + c_yu + d_y\]
\[\vec z(u) = a_z u^3 + b_z u^2 + c_zu + d_z\]
Combining these into one equation, we have
\[\vec p(u) = au^3 + bu^2 + cu + d\]
Again, we will limit \(u\) to \([0, 1]\) and let's take 4 points this time.
- Starting point (\(u = \frac 0 3\))
- Intermediate point 1 (\(u = \frac 1 3\))
- Intermediate point 2 (\(u = \frac 2 3\))
- Ending point (\(u = \frac 3 3\))
Substituting \(u\) in \(\vec x(u)\)
\[
\begin{aligned}
& x_1 = d_x \\
& x_2 = \frac{1}{27}a_x + \frac{1}{9}b_x + \frac{1}{3}c_x + d_x \\
& x_3 = \frac{8}{27}a_x + \frac{4}{9}b_x + \frac{2}{3}c_x + d_x \\
& x_4 = a_x + b_x + c_x + d_x
\end{aligned}
\]
Finding the variables \(a_x, b_x, c_x\) and \(d_x\), we have
\[
\begin{aligned}
& a_x = -\frac{9}{2}x_1 + \frac{27}{2}x_2 - \frac{27}{2}x_3 + \frac{9}{2}x_4 \\
& b_x = 9x_1 - \frac{45}{2}x_2 + 18x_3 - \frac{9}{2}x_4 \\
& c_x = -\frac{11}{2}x_1 + 9x_2 - \frac{9}{2}x_3 + x_4 \\
& d_x = x_1
\end{aligned}
\]
Substituting back into \(\vec x(u)\), we have
\[
x(u) = \left(-\frac{9}{2}x_1 + \frac{27}{2}x_2 - \frac{27}{2}x_3 + \frac{9}{2}x_4\right) u^3 + \left(9x_1 - \frac{45}{2}x_2 + 18x_3 - \frac{9}{2}x_4\right) u^2 \\
+ \left(-\frac{11}{2}x_1 + 9x_2 - \frac{9}{2}x_3 + x_4\right) u + x_1
\]
Refactoring it, we have
\[
x(u) = \left(-\frac{9}{2}u^3 + 9u^2 - \frac{11}{2}u + 1\right)x_1 + \left(\frac{27}{2}u^3 - \frac{45}{2}u^2 + 9u\right)x_2 \\
+ \left(-\frac{27}{2}u^3 + 18u^2 - 9u\right)x_3 + \left(\frac{9}{2}u^3 - \frac{9}{2}u^2 + u\right)x_4
\]
After finding the equivalent expressions for \(\vec y (u)\) and \(\vec z(u)\), we have
\[
\vec P(u) = \left(-\frac{9}{2}u^3 + 9u^2 - \frac{11}{2}u + 1\right)p_1 + \left(\frac{27}{2}u^3 - \frac{45}{2}u^2 + 9u\right)p_2 \\
+ \left(-\frac{27}{2}u^3 + 18u^2 - 9u\right)p_3 + \left(\frac{9}{2}u^3 - \frac{9}{2}u^2 + u\right)p_4
\]
Let
\[
\begin{array}{cc}
G_1 = \left(-\frac{9}{2}u^3 + 9u^2 - \frac{11}{2}u + 1\right)
& G_2 = \left(\frac{27}{2}u^3 - \frac{45}{2}u^2 + 9u\right) \\
G_3 = \left(-\frac{27}{2}u^3 + 18u^2 - 9u\right)
& G_4 = \left(\frac{9}{2}u^3 - \frac{9}{2}u^2 + u\right)
\end{array}
\]
such that
\[\vec P(u) = G_1p_1 + G_2p_2 + G_3 p_3 + G_4 p_4\]
\[\vec P(u) = GP\]
where
\[
G =
\begin{bmatrix}
G_1 & G_2 & G_3 & G_3
\end{bmatrix}
\]
\[
P =
\begin{bmatrix}
p_1 & p_2 & p_3 & p_3
\end{bmatrix}^T
\]
But \(G\) can be further decomposed into
\[G = U N\]
Where
\[
U = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix}^T
\]
\[
N =
\begin{bmatrix}
-\frac{9}{2} & \frac{27}{2} & -\frac{27}{2} & \frac{9}{2} \\
9 & -\frac{45}{2} & 18 & -\frac{9}{2} \\
-\frac{11}{2} & 9 & -\frac{9}{2} & 1 \\
1 & 0 & 0 & 0
\end{bmatrix}
\]
\[
A = \begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix}
=
\begin{bmatrix}
a_x & a_y & a_z \\
b_x & b_y & b_z \\
c_x & c_y & c_z \\
d_x & d_y & d_z
\end{bmatrix}
\]
\[\vec p(u) = UA\]
\[\because \vec p(u) = \vec P(u)\]
\[UA = GP\]
\[\because G = UN\]
\[\implies UA = UNP\]
\[\implies A = NP\]