Skip to content

37. The Tangent Vector1

Dated: 05-07-2025

\[ \vec P^\prime(u) = \begin{bmatrix} \frac d {du} x(u) \hat i & \frac d {du} y(u) \hat j & \frac d {du} z(u) \hat k \end{bmatrix} \]
\[ \vec P^\prime(u) = \begin{bmatrix} x^\prime & y^\prime & z^\prime \end{bmatrix} \]

The set2 of vectors1 \(p_0, p_1, p_0^\prime\) and \(p_1^\prime\) are called boundary conditions.

This method itself is called the cubic Hermite interpolation, after C. Hermite (1822-1901) the French mathematician who made significant contributions to our understanding of cubic and quadratic polynomials.

\[x(u) = a_x u^3 + b_x u^2 + c_x u + d_x\]
\[\frac d {du} x(u) = \frac d {du} \left(a_x u^3 + b_x u^2 + c_x u + d_x\right)\]
\[x^\prime = 3a_x u^2 + 2b_x u + c_x\]
\[x(0) = x_0 = d_x\]
\[x(1) = a_x + b_x + c_x + d_x\]
\[x^\prime(0) = x^\prime_0 = c_x\]
\[x^\prime(1) = x^\prime_1 = 3a_x + 2b_x + c_x\]

Solving for \(a_x, b_x, c_x\) and \(d_x\), we get

\[a_x = 2(x_0 - x_1) + x_0^\prime + x_1^\prime\]
\[b_x = 3(-x_0 + x_1) - 2x_0^\prime - x_1^\prime\]
\[c_x = x_0^\prime\]
\[d_x = x_0\]

Substituting in \(\vec x(u)\), we get

\[ \vec x(u) = (2x_0 - 2x_1 + x_0^\prime + x_1^\prime) u^3 + (-3x_0 + 3x_1 - 2x_0^\prime - x_1^\prime x_0^\prime) u^2 + x_0^\prime + x_0 \]
\[ \vec x(u) = (2u^3 - 3u^2 + 1)x_0 + (-2u^3 + 3u^2)x_1 + (u^3 - 2u^2 + u)x_0^\prime + (u^3 - u^2)x_1^\prime \]

Because \(\vec y(u)\) and \(\vec z(u)\) have equivalent forms

\[ \vec P(u) = (2u^3 - 3u^2 + 1)p_0 + (-2u^3 + 3u^2)p_1 + (u^3 - 2u^2 + u)p_0^\prime + (u^3 - u^2)p_1^\prime \]

Let

\[ \begin{aligned} & F_1 = 2u^3 - 3u^2 + 1 \\ & F_2 = -2u^3 + 3u^2 \\ & F_3 = u^3 - 2u^2 + u \\ & F_4 = u^3 - u^2 \end{aligned} \]
\[ F = \begin{bmatrix} F_1 & F_2 & F_3 & F_4 \end{bmatrix} \]
\[ B = \begin{bmatrix} p_0 & p_1 & p_0^\prime & p_1^\prime \end{bmatrix}^T \]
\[ \vec P(u) = F_1 p_0 + F_2 p_1 + F_3 p_0^\prime + F_4 p_1^\prime \]
\[\vec P(u) = FB\]

\(F\) can be further decomposed into

\[F = UM\]

where

\[ U = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \]
\[ M = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \]
\[\vec P(u) = UMB\]
\[\vec p_0^\prime = \hat {p_0^\prime} \cdot |p_0^\prime|\]
\[\vec p_1^\prime = \hat {p_1^\prime} \cdot |p_1^\prime|\]
\[ \therefore \vec P(u) = (2u^3 - 3u^2 + 1)p_0 + (-2u^3 + 3u^2)p_1 + (u^3 - 2u^2 + u)\hat {p_0^\prime} \cdot |p_0^\prime| + (u^3 - u^2)\hat {p_1^\prime} \cdot |p_1^\prime| \]
\[ \implies B = \begin{bmatrix} p_0 \\ p_1 \\ \hat {p_0^\prime} \cdot |p_0^\prime|\\ \hat {p_1^\prime} \cdot |p_1^\prime|\\ \end{bmatrix} \]

References


  1. Read more about vectors

  2. Read more about sets