02. Introduction to Matrices
Dated: 10-03-2025
Matrix
A matrix
is a collection or an array
of numbers
or functions
(both are called members
, entry
or elements
of the matrix
) arranged in rows and columns.
Denotation
The matrix is denoted by capital letters such as \(A, B\) etc meanwhile its members
are represented by small letters such as \(a, b\) etc.
Order
The order is the size or dimension of a matrix, written as \(r \times c\) where \(r\) represents the number of rows and \(c\) represents the number of columns.
\[
A =
\left[
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\right]
\]
In general terms, the element
in \(i^{\text{th}}\) row and \(j^\text{th}\) column of a \(m \times n\) matrix can be written as \(a_{\text{ij}}\).
Example
The following matrix has an order
of \(2 \times 3\) with \(2\) rows and \(3\) columns.
\[
A = \left[
\begin{matrix}
2 & -1 & 3\\
0 & 4 & 6
\end{matrix}
\right]
\]
Square Matrix
A matrix is called a square matrix
if the number of rows is equal to the number of columns.
\[
A = \left[
\begin{matrix}
1 & 2\\
3 & 4
\end{matrix}
\right]
\]
Equal Matrices
Two matrices are called equal matrices
if
- They have same dimensions.
- The corresponding
entries
are equal.
\[
A = \left[
\begin{matrix}
1 & 2\\
3 & 4
\end{matrix}
\right]
\quad
\text{ and }
\quad
B = \left[
\begin{matrix}
1 & 2\\
3 & 4
\end{matrix}
\right]
\]
Both are equal matrices
.
Column Matrix
A matrix is called a column matrix
if it has only one column and \(n\) rows.
\[X = \left[
\begin{matrix}
a_{11}\\
a_{21}\\
\vdots\\
a_{n1}\\
\end{matrix}
\right]
= [b_{\text{i1}}]_{n \times 1}
\]
A column matrix
is also called a column vector
or simply a vector
.
Multiple of a Matrix
If \(A\) is a matrix and \(k\) is a non-zero constant then
\[
kA =
k\left[
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\right]
\]
\[
=
\left[
\begin{matrix}
ka_{11} & ka_{12} & \cdots & ka_{1n} \\
ka_{21} & ka_{22} & \cdots & ka_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
ka_{m1} & ka_{m2} & \cdots & ka_{mn}
\end{matrix}
\right]
\]
\[= [ka_{\text{ij}}]_{m \times n}\]
Commutative property of scalar multiplication
\[kA = Ak\]
Addition of Matrices
If \(A = [a_{\text{ij}}]\) and \(B = [b_{\text{ij}}]\) are matrices of order \(m \times n\) then \(A + B = [a_{\text{ij}} + b_{\text{ij}}]_{m \times n}\).
Difference of Matrices
Similar to addition, \(A - B\) can be written as \(A + (-B)\) where \(-B = -1 \times B\).
Product of Matrices
\[A_{m \times n} \cdot B_{n \times p} = C_{m \times p}\]
\[
A =
\left[
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\right]
\]
\[
B =
\left[
\begin{matrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{np}
\end{matrix}
\right]
\]
\[A \times B = AB =
\left[
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\right]
\left[
\begin{matrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{np}
\end{matrix}
\right]
\]
\[
=
\left[
\begin{matrix}
a_{11}b_{11} + a_{12}b_{21} + \cdots + a_{1n}b_{n1} & \cdots & a_{11}b_{1p} + a_{12}b_{2p} + \cdots + a_{1n}b_{np}\\
a_{21}b_{11} + a_{22}b_{21} + \cdots + a_{2n}b_{n1} & \cdots & a_{21}b_{1p} + a_{22}b_{2p} + \cdots + a_{2n}b_{np}\\
\vdots & \vdots & \vdots \\
a_{m1}b_{11} + a_{m2}b_{21} + \cdots + a_{mn}b_{n1} & \cdots & a_{m1}b_{1p} + a_{m2}b_{2p} + \cdots + a_{mn}b_{np}\\
\end{matrix}
\right]
\]
\[
= \left(
\sum_{k = 1}^n a_{ik}b_{kj}
\right)_{m \times p}
\]
For two matrices to be eligible for multiplication, the number of columns of the first one has to be equal to number of rows of second one.
\[A_{m \times n} \cdot B_{n \times p} = C_{m \times p}\]
Multiplicative Identity
\[
I =
\left[
\begin{matrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{matrix}
\right]
\]
\[A \times I = I \times A = A\]
Zero or Null Matrix
A matrix with all entries
being \(0\) is called a null matrix
.
\[
O = \left[
\begin{matrix}
0 & 0\\
0 & 0
\end{matrix}
\right]
\]
\[
O = \left[
\begin{matrix}
0\\
0
\end{matrix}
\right]
\]
Associative Law
If \(A, B\) and \(C\) are three matrices then
\[A(BC) = (AB)C\]
Distributive Law
If \(A, B\) and \(C\) are three matrices then
\[A(B + C) = AB + AC\]
\[(A + B)C = AC + BC\]
There are some rules from \(\mathbb R\) which do not carry over to matrix addition.
For example, \(\forall a, b, c, d \in \mathbb R\),
- \(ab = cd \land a \neq 0 \implies b = c\) (Law of Cancellation)
- \(ab = 0 \implies a = 0 \lor b = 0\).
Determinant of a Matrix
The determinant
is a special number associated with every square matrix and is denoted by \(\det(A)\) or \(|A|\).
\[
A_{2 \times 2} =
\left[
\begin{matrix}
1 & 2\\
3 & 4
\end{matrix}
\right]
\]
\[
|A_{2 \times 2}| =
\left|
\begin{matrix}
1 & 2\\
3 & 4
\end{matrix}
\right|
=
(1 \times 4) - (3 \times 2)
=
4 - 6 = -2
\]
\[
A_{3 \times 3} =
\left[
\begin{matrix}
3 & 6 & 2 \\
2 & 5 & 1 \\
-1 & 2 & 4
\end{matrix}
\right]
\]
\[
|A_{3 \times 3}| =
\left|
\begin{matrix}
3 & 6 & 2 \\
2 & 5 & 1 \\
-1 & 2 & 4
\end{matrix}
\right|
\]
\[
\begin{vmatrix}
3 & 6 & 2 \\
2 & 5 & 1 \\
-1 & 2 & 4
\end{vmatrix}
= 3\begin{vmatrix}
5 & 1 \\
2 & 4
\end{vmatrix}
- 6\begin{vmatrix}
2 & 1 \\
-1 & 4
\end{vmatrix}
+ 2\begin{vmatrix}
2 & 5 \\
-1 & 2
\end{vmatrix}
\]
\[
3(20 - 2) - 6(8 +1) + 2(4 + 5) = 18
\]
Transpose of a Matrix
If \(A_{m \times n}\) is a matrix with \(m\) rows and \(n\) columns then its transpose
\(A_{m \times n}^T = A_{n \times m}\) can be obtained by interchanging its rows with columns.
\[
A =
\left[
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\right]
\]
\[
A^T =
\left[
\begin{matrix}
a_{11} & a_{21} & \cdots & a_{m1} \\
a_{12} & a_{22} & \cdots & a_{m2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1n} & a_{2n} & \cdots & a_{mn}
\end{matrix}
\right]
\]
Properties
- \((kA)^T= k A^T\)
- \((A + B)^T = A^T + B^T\)
- \((ABC)^T = C^TB^TA^T\)
Multiplicative Inverse
If \(A_{n \times n}\) and \(B_{n \times n}\) are matrices then \(B_{n \times n}\) is called the multiplicative inverse
of \(A_{n \times n}\) if
\[AB = BA = I\]
And it is denoted as \(B = A^{-1}\)
Singular and Non Singular Matrix
A matrix \(A\) is called singular
if \(\det(A) = 0\) otherwise if \(\det(A) \neq 0\) is called non singular matrix
.
Minor of an Element of a Matrix
Let \(A_{n \times n}\) be a matrix then minor
\(M_{ij}\) of the element
\(a_{ij} \in A\) is the determinant of the matrix \(B_{(n - 1) \times (n - 1)}\) obtained by deleting the \(i^{\text{th}}\) row and \(j^{\text{th}}\) column from \(A\).
Co-factor of an Element of a Matrix
If \(C_{ij}\) is the cofactor
of \(a_{ij}\) element
then
\[C_{ij} = (-1)^{i + j} M_{ij}\]
Theorem
\[\det(A_{n \times n})\iff A_{n \times n}^{-1} \quad \text{exists}\]
Theorem
\[A^{-1} = \frac{\text{Adj}(A)}{\det(A)}\]
Adjoint of \(A\)
\(\text{Adj}(A) = [C_{ij}]^T\)
Derivative of a Matrix of Functions
If \(A(t)\) is a matrix with elements
which are functions
which are differentiable
on a common interval
\[A(t) = [a_{ij}(t)]_{m \times n}\]
then
\[\frac{d}{dt} A(t) = \left[\frac{d a_{ij}}{dt}\right]_{m \times n}\]
It can be denoted as \(A^\prime(t)\).
Integral of a Matrix of Functions
If \(A(s)\) is a matrix with elements
which are functions
which are continuous
on a common interval
containing \(t\)
\[
\int_{t_0}^t A(s) ds = \left[
\int_{t_0}^t a_{ij}(s)ds
\right]_{m \times n}
\]
References
Read more about notations and symbols.