Skip to content

06. Matrix Equations

Dated: 12-03-2025

A fundamental idea in linear algebra1 is to view a linear combination2 of vectors3 as the product of a matrix4 with a vector.3

Definition

If \(A\) is a \(m \times n\) matrix4 and \(\vec x\) is a vector3 in \(\mathbb R^n\) then \(A\vec x\) is a linear combination.2

\[ A \vec x = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = a_1x_1 + a_2x_2 + \cdots + a_nx_n \]

Example

\[ \begin{aligned} x_1 + 2x_2 - x_3 = 4 \\ -5x_2 + 3x_3 = 1 \end{aligned} \]
\[\Big\downarrow\]
\[ x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -5 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \]
\[\Big\downarrow\]
\[ \begin{bmatrix} 1 & 2 & -1\\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} \]
\[\Big\downarrow\]
\[A \vec x = \vec b\]

This is called the matrix equation.

Theorem 1

The solution set for \(A \vec x = \vec b\) is same as the for the equation

\[x_1 \vec a_1 + x_2 \vec a_2 + \cdots + x_n \vec a_n = \vec b\]

Existence of Solution

The equation \(A \vec x = \vec b\) has a solution if and only if \(\vec b\) is a linear combination1 of the columns of \(A\).

Theorem 2

If \(A\) is a \(m \times n\) matrix4 then following statements are logically equivalent.

  • For each \(\vec b\) in \(\mathbb R^m\) the equations \(A \vec x = \vec b\) has a solution.
  • The columns of \(A\) span5 \(\mathbb R^m\).
  • \(A\) has a pivot position6 in every row.
The Dot Product3

\(\begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 + 3x_2 + 4x_3 \end{bmatrix}\)

References

Read more about notations and symbols.


  1. Read more about linear algebra

  2. Read more about linear combinations

  3. Read more about vectors

  4. Read more about matrices

  5. Read more about spans

  6. Read more about pivot positions