Skip to content

11. Matrix Operations

Dated: 18-03-2025

\((i - j)th\) Element of a Matrix

\[\text{Column }j\]
\[ \text{Row }i \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \quad & \vdots & \quad & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \quad & \vdots & \quad & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \\ \end{bmatrix} = A \]
\[ \begin{array}{ccccc} \quad & \uparrow & \quad & & \uparrow & \quad & &\uparrow && \\ & a_1 & && a_j & & &a_n \end{array} \]

Diagonal Matrix

A diagonal matrix is a square matrix1 whose non-diagonal entries1 are zero.

\[ D = \begin{bmatrix} d_{11} & 0 & \cdots & 0 \\ 0 & d_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & d_{nn} \end{bmatrix} \]

The entries1 \(a_{ij}\) where \(i = j\) form the main diagonal.

Theorem

Let \(A, B\) and \(C\) be matrices1 of the same size and \(r\) and \(s\) be the scalars.

  • \(A + B = B + A\)
  • \((A + B) + C = A + (B + C)\)
  • \(A + 0 = A\)
  • \(r(A + B) = rA + rB\)
  • \((r + s)A = rA + sA\)
  • \(r(sA) = (rs)A\)

Row Column Rule for Computing \(AB\)

\[A(B(\vec x)) = AB (\vec x)\]

The left side transforms \(\vec x\) according to \(B\) and then according to \(A\).
Meanwhile, the right side is a composition of those transforms.

Properties of Product

  • \(A(BC) = (AB)C\)
  • \(A(B + C) = AB + AC\)
  • \((B + C)A = BA + CA\)
  • \(r(AB) = (rA)B = A(rB)\)
  • \(I_mA = A = AI_m\)

Warnings

  • In general, \(AB \ne BA\)
  • In general, if \(AC = BC\) then it is not necessarily the case that \(A = B\)
  • In general, if \(AB = 0\) then it is not necessarily the case that \(A = 0\) or \(B = 0\)

Power of a Matrix

\[A^k = \prod^k A = \underbrace{A \times A \times \cdots \times A}_{k}\]
\[A^0 = I\]

Theorems

  • \((A^t)^t = A\)
  • \((A + B)^t = A^t + B^t\)
  • \((rA)^t = r A^t\)
  • \((AB)^t = B^tA^t\)

References

Read more about notations and symbols.


  1. Read more about matrices