11. Matrix Operations
Dated: 18-03-2025
\((i - j)th\) Element of a Matrix
\[\text{Column }j\]
\[
\text{Row }i
\begin{bmatrix}
a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
\vdots & \quad & \vdots & \quad & \vdots \\
a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\
\vdots & \quad & \vdots & \quad & \vdots \\
a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \\
\end{bmatrix}
= A
\]
\[
\begin{array}{ccccc}
\quad & \uparrow & \quad & & \uparrow & \quad & &\uparrow && \\
& a_1 & && a_j & & &a_n
\end{array}
\]
Diagonal Matrix
A diagonal matrix
is a square matrix
1 whose non-diagonal entries
1 are zero.
\[
D =
\begin{bmatrix}
d_{11} & 0 & \cdots & 0 \\
0 & d_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots\\
0 & 0 & \cdots & d_{nn}
\end{bmatrix}
\]
The entries
1 \(a_{ij}\) where \(i = j\) form the main diagonal
.
Theorem
Let \(A, B\) and \(C\) be matrices
1 of the same size and \(r\) and \(s\) be the scalars
.
- \(A + B = B + A\)
- \((A + B) + C = A + (B + C)\)
- \(A + 0 = A\)
- \(r(A + B) = rA + rB\)
- \((r + s)A = rA + sA\)
- \(r(sA) = (rs)A\)
Row Column Rule for Computing \(AB\)
\[A(B(\vec x)) = AB (\vec x)\]
The left side transforms \(\vec x\) according to \(B\) and then according to \(A\).
Meanwhile, the right side is a composition of those transforms.
Properties of Product
- \(A(BC) = (AB)C\)
- \(A(B + C) = AB + AC\)
- \((B + C)A = BA + CA\)
- \(r(AB) = (rA)B = A(rB)\)
- \(I_mA = A = AI_m\)
Warnings
- In general, \(AB \ne BA\)
- In general, if \(AC = BC\) then it is not necessarily the case that \(A = B\)
- In general, if \(AB = 0\) then it is not necessarily the case that \(A = 0\) or \(B = 0\)
Power of a Matrix
\[A^k = \prod^k A = \underbrace{A \times A \times \cdots \times A}_{k}\]
\[A^0 = I\]
Theorems
- \((A^t)^t = A\)
- \((A + B)^t = A^t + B^t\)
- \((rA)^t = r A^t\)
- \((AB)^t = B^tA^t\)
References
Read more about notations and symbols.