Skip to content

13. Characterizations of Invertible Matrices

Dated: 17-04-2025

Solving Linear Equations by Matrix Inversion

Theorem

If \(A^{-1}\) exists and \(b \in \mathbb R^n\) then solution for \(Ax = b\) is

\[x = A^{-1}b\]

Theorem

If \(AB = I\) then \(B = A^{-1}\) and \(A = B^{-1}\).

Example

\[ \begin{align} &x_1 &+ 2x_2 &&+ 3x_3 &= 5\\ &2x_1 &+ 5x_2 &&+ 3x_3 &= 3\\ &x_1 & &&+ 8x_3 &= 17\\ \end{align} \]

We can rewrite it in the \(Ax = b\) form.

\[ A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad b = \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix} \]
\[ \det(A) = 40 - 2(16 - 3) + 3(0 - 5) = 40 - 2(13) + 3(-5) = 40 - 26 - 15 = -1 \neq 0 \]

Therefore, \(A^{-1}\) exists.
Now our goal is

\[ \begin{bmatrix} A & I \end{bmatrix} \to \begin{bmatrix} I & A^{-1} \end{bmatrix} \]
\[ \left[ \begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{array} \right] \]
\[\Big\downarrow R_2 = R_2 - 2R_1\]
\[\Big\downarrow R_3 = R_3 - R_1\]
\[ \left[ \begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & -2 & 5 & -1 & 0 & 1 \end{array} \right] \]
\[\Big\downarrow R_3 = R_3 + 2R_2\]
\[ \left[ \begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & -1 & -5 & 2 & 1 \end{array} \right] \]
\[\Big\downarrow R_3 = -R_3\]
\[ \left[ \begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & -3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{array} \right] \]
\[\Big\downarrow R_2 = R_2 + 3R_3\]
\[\Big\downarrow R_1 = R_1 - 3R_3\]
\[ \left[ \begin{array}{ccc|ccc} 1 & 2 & 0 & -14 & 6 & 3 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{array} \right] \]
\[\Big\downarrow R_1 = R_1 - 2R_2\]
\[ \left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & -40 & 16 & 9 \\ 0 & 1 & 0 & 13 & -5 & -3 \\ 0 & 0 & 1 & 5 & -2 & -1 \end{array} \right] \]
\[ A^{-1} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \]
\[ x = A^{-1}b = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \\ 17 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \]
\[\therefore x_1 = 1, x_2 = -1, x_3 = 2\]
Applicability

It is only applicable when \(A\) is a square matrix1 and fails if \(A^{-1}\) doesn't exist.

Theorem

If \(Ax = 0\) is a homogeneous linear system2 then \(A^{-1}\) exists only iff this system has trivial solution.

Theorem

  • \(A\) is an invertible matrix.3
  • \(A \sim I\).
  • \(A\) has \(n\) pivot positions.
  • The equation \(A\vec x = \vec 0\) has only the trivial solution.
  • The columns of \(A\) form a linearly independent set.4
  • The linear transformation5 \(\vec{x} \to A\vec{x}\) is one-to-one.
  • The equation \(A\vec{x} = \vec{b}\) has at least one solution for each \(\vec{b} \in\mathbb{R}^n\).
  • The columns of \(A\) span6 \(\mathbb{R}^n\).
  • The linear transformation5 \(\vec{x} \to A\vec{x}\) maps \(\mathbb{R}^n\) onto \(\mathbb{R}^n\).
  • There is an \(n \times n\) matrix \(C\) such that \(CA = I\).
  • There is an \(n \times n\) matrix \(D\) such that \(AD = I\).
  • \(A^T\) is an invertible matrix.3

Solving Multiple Linear Systems with a Common Coefficient Matrix

\[ Ax_1 = b_1, \quad Ax_2 = b_2, \quad \dots, \quad Ax_k = b_k \]

If \(A^{-1}\) exists then

\[ x_1 = A^{-1}b_1, \quad x_2 = A^{-1}b_2, \quad \dots, \quad x_k = A^{-1}b_k \]

Find a Matrix1 from Linear Transformation5

Example

Let \(L\) be a linear transformation5 from \(\mathbb R^2 \to \mathbb P_2\) (\(\mathbb P_2\) is set7 of polynomials) defined

\[T(x, y) = xyt + (x + y)t^2\]

Find the matrix1 representing \(T\) with respect to the standard bases.

Solution

Let \(A = \{(1, 0), (0, 1)\}\) be the basis of \(\mathbb R^2\) then

\[T(1, 0) = (1)(0)t + (1 + 0)t^2 = t^2 = (0, 0, 1) \quad \because t^2 = 0 \times 1 + 0 \times t + 1 \times t^2\]
\[T(0, 1) = (0)(1)t + (0 + 1)t^2 = t^2 = (0, 0, 1) \quad \because t^2 = 0 \times 1 + 0 \times t + 1 \times t^2\]
\[A = \begin{bmatrix} 0 & 0\\ 0 & 0\\ 1 & 1 \end{bmatrix} \]

Invertible Linear Transformations

Let \(T\) be a linear transformation5

\[T: \mathbb R^n \to \mathbb R^n\]

And \(A\) be the matrix1 associated with \(T\) then

\[T^{-1} \text{ exists} \iff A^{-1} \text{ exists}\]

Also if \(S(\vec x) = A^{-1} \vec x\) then

\[S(T(x)) = x \forall x \in \mathbb R^n\]
\[T(S(x)) = x \forall x \in \mathbb R^n\]
\(T^{-1}\) is unique.

Proposition

Let \(T: \mathbb R^n \to \mathbb R^m\) be a linear transformation5 \(T(\vec x) = A_{m \times n} \vec x, \forall x \in \mathbb R^n\).
\(T^{-1}\) exists if \(y = A \vec x\) has a unique solution.

Case 1

If \(m < n\) then \(y = A \vec x\) has either no solution or infinitely many solutions for any \(y \in \mathbb R^m\).
Therefore, \(y = A \vec x\) is not invertible.3

Case 2

If \(m = n\), then the system \(A \vec x = y\) has a unique solution if and only if \(\text{Rank} (A) = n\).

Case 3

If \(m > n\), then the transformation5 \(y = A \vec x\) is non-invertible3 because we can find a vector8 \(y \in \mathbb R^m\) such that \(y = A \vec x\) is inconsistent.

References

Read more about notations and symbols.


  1. Read more about matrices

  2. Read more about homogeneous linear system

  3. Read more about invertible matrices

  4. Read more about linear independence

  5. Read more about linear transformations

  6. Read more about spanning

  7. Read more about sets

  8. Read more about vectors