Skip to content

14. Partitioned Matrices

Dated: 18-04-2025

A block matrix or a partitioned matrix is a partition of a matrix1 into rectangular smaller matrices1 called blocks.

Example

\[ P = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \end{bmatrix} \]

\(P\) can be partitioned as

\[ P_{11} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad P_{12} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}, \quad P_{21} = \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix}, \quad P_{22} = \begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} \]
\[ P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \]

Column Matrices

\[ A = \left[ \begin{array}{c|c|c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \\ a_{51} & a_{52} & a_{53} \\ \end{array} \right] = \left[ \, C_1 \; \middle| \; C_2 \; \middle| \; C_3 \, \right] \]

\(C_1, C_2\) and \(C_3\) are called column matrices of \(A\).

Row Matrices

\[ A = \left[ \begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ \hline a_{21} & a_{22} & a_{23} \\ \hline a_{31} & a_{32} & a_{33} \\ \hline a_{41} & a_{42} & a_{43} \\ \hline a_{51} & a_{52} & a_{53} \\ \end{array} \right] = \left[ \begin{array}{c} R_1 \\ \hline R_2 \\ \hline R_3 \\ \hline R_4 \\ \hline R_5 \\ \end{array} \right] \]

\(R_1, R_2, R_3, R_4\) and \(R_5\) are row matrices of \(A\).

Addition of Blocked Matrices

If \(A\) and \(B\) are matrices1 of same size and are partitioned in the same way then each block of \(A + B\) is sum of corresponding blocks of \(A\) and \(B\).

Theorem

If \(A\) is \(m \times n\) and \(B\) is \(n \times p\) then

\[AB = \begin{bmatrix} \text{Col}_1(A) & \text{Col}_2(A) & \ldots & \text{Col}_n(A) \end{bmatrix} \begin{bmatrix} \text{Row}_1(B)\\ \text{Row}_2(B)\\ \vdots \\ \text{Row}_n(B)\\ \end{bmatrix} \]
\[ = \text{Col}_1(A) \text{Row}_1(B) + \text{Col}_2(A) \text{Row}_2(B) + \cdots \text{Col}_n(A) \text{Row}_n(B) \]

Multiplication of Partitioned Matrices

\[ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} \text{ and } B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \]
\[ AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \\ A_{31}B_{11} + A_{32}B_{21} & A_{31}B_{12} + A_{32}B_{22} \end{bmatrix} \]

It is known as block multiplication.

Example

\[ A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \]

Evaluate \(A^2\)

Solution

\[ A = \left[ \begin{array}{ccc|cc|c} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right] = \begin{bmatrix} I_3 & O_{32} & A_1 \\ O_{23} & I_2 & O_{21} \\ A_1^t & O_{12} & 1 \end{bmatrix} \]

Where

\[ A_1 = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} \]
\[ A^2 = \begin{bmatrix} I_3 & O_{32} & A_1 \\ O_{23} & I_2 & O_{21} \\ A_1^t & O_{12} & 1 \end{bmatrix} \begin{bmatrix} I_3 & O_{32} & A_1 \\ O_{23} & I_2 & O_{21} \\ A_1^t & O_{12} & 1 \end{bmatrix} = \begin{bmatrix} I_3 + A_1A_1^t & O_{32} & A_1 + A_1 \\ O_{23} & I_2 & O_{21} \\ A_1^t + A_1^t & O_{12} & A_1^t A_1 + 1 \end{bmatrix} \]
\[ I_3 + A_1A_1^t = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix} \]
\[ A_1 + A_1 = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix} \]
\[ A_1^t + A_1^t = \begin{bmatrix} 2 & 2 & 2 \end{bmatrix} \]
\[ A_1^t A_1 + 1 = [4] \]
\[ A^2 = \left[ \begin{array}{ccc|cc|c} 2 & 1 & 1 & 0 & 0 & 2 \\ 1 & 2 & 1 & 0 & 0 & 2 \\ 1 & 1 & 2 & 0 & 0 & 2 \\ \hline 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 2 & 2 & 2 & 0 & 0 & 4 \end{array} \right] \]
\[ A^2 = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 & 2 \\ 1 & 2 & 1 & 0 & 0 & 2 \\ 1 & 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 2 & 2 & 2 & 0 & 0 & 4 \end{bmatrix} \]

Toeplitz Matrix

A matrix1 in which each descending diagonal from left to right is constant is called a Toeplitz matrix or diagonal-constant matrix.

Example

\[ A = \begin{bmatrix} a & 1 & 2 & 3 \\ 4 & a & 1 & 2 \\ 5 & 4 & a & 1 \\ 6 & 5 & 4 & a \end{bmatrix} \]

Block Toeplitz Matrix

A blocked matrix in which blocks (blocked matrices) are repeated down the diagonals of the matrix1 is called a blocked Toeplitz matrix.

\[ B = \begin{bmatrix} B(1,1) & B(1,2) & B(1,3) & B(1,4) & B(1,5) \\ B(2,1) & B(1,1) & B(1,2) & B(1,3) & B(1,4) \\ B(3,1) & B(2,1) & B(1,1) & B(1,2) & B(1,3) \\ B(4,1) & B(3,1) & B(2,1) & B(1,1) & B(1,2) \\ B(5,1) & B(4,1) & B(3,1) & B(2,1) & B(1,1) \end{bmatrix} \]

Inverses of Partitioned Matrices

Block Diagonal Matrices

\[ A = \begin{bmatrix} D_1 & 0 & \cdots & 0 \\ 0 & D_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_k \end{bmatrix} \]

Where \(D_1, D_2\) and \(D_k\) are square matrices.1
It's inverse can be found out as

\[ A^{-1} = \begin{bmatrix} D_1^{-1} & 0 & \cdots & 0 \\ 0 & D_2^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_k^{-1} \end{bmatrix} \]

Block Upper Triangular Matrices

\[ A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ O & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & A_{kk} \end{bmatrix} \]

Where \(A_{11}, A_{22}\) and \(A_{kk}\) are square.

Example

Let \(A\) be a block upper triangular matrix.

\[ A = \begin{bmatrix} A_{11} & A_{12}\\ 0 & A_{22} \end{bmatrix} \]

Where the order1 of \(A_{11}\) is \(p \times p\) and that of \(A_{22}\) is \(q \times q\) respectively.
Find \(A^{-1}\)

Solution
\[ B = \begin{bmatrix} B_{11} & B_{12}\\ B_{21} & B_{22} \end{bmatrix} \]
\[B = A^{-1}\]
\[ AB = \begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} I_p & O \\ O & I_q \end{bmatrix} \]
\[ \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{22}B_{21} & A_{22}B_{22} \end{bmatrix} = \begin{bmatrix} I_p & O \\ O & I_q \end{bmatrix} \]
\[ A_{11}B_{11} + A_{12}B_{21} = I_p \]
\[ A_{11}B_{12} + A_{12}B_{22} = O \]
\[ A_{22}B_{21} = O \]
\[ A_{22}B_{22} = I_q \]
\(B_{22} = ?\)
\[ A_{22}B_{22} = I_q \]
\[ A_{22}^{-1}A_{22}B_{22} = A^{-1}_{22}I_q \]
\[ I_{q}B_{22} = A^{-1}_{22} \]
\[ B_{22} = A^{-1}_{22} \]
\(B_{21} = ?\)
\[ A_{22}B_{21} = O \]
\[ A_{22}^{-1}A_{22}B_{21} = A^{-1}_{22}O \]
\[ I_{q}B_{21} = O \]
\[ B_{21} = O \]
\(B_{11} = ?\)
\[ A_{11}B_{11} + O = I_p \\ \implies A_{11}B_{11} = I_p \\ \implies B_{11} = A_{11}^{-1} \]
\(B_{12} = ?\)
\[ A_{11}B_{12} + A_{12}B_{22} = O \]
\[ A_{11}B_{12} = -A_{12}B_{22} \]
\[ A^{-1}_{11}A_{11}B_{12} = A_{11}^{-1}-A_{12}B_{22} \]
\[ I_1B_{12} = A_{11}^{-1}-A_{12}B_{22} \]
\[ B_{12} = A_{11}^{-1}-A_{12}A_{22}^{-1} \quad \because B_{22}=A^{-1}_{22} \]
\[ A^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} A_{11}^{-1} & -A_{11}^{-1}A_{12}A_{22}^{-1} \\ O & A_{22}^{-1} \end{bmatrix} \]

References

Read more about notations and symbols.


  1. Read more about matrices