Skip to content

18. Properties of Determinant

Dated: 22-04-2025

Theorem

  • If a multiple of one row is added to another row of \(A\) then the determinant1 remains the same.
  • If two rows of \(A\) are interchanged to produce \(B\) then \(\det (B) = - \det (A)\).
  • If one of the rows of \(A\) is multiplied by a constant \(k\) to produce \(B\) then \(\det (B) = k \times \det (A)\).

Example

\[ A = \begin{vmatrix} 2 & 3 & 1 & 0 & 1 \\ 1 & 1 & 3 & 1 & 2 \\ 2 & 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 1 & 2 \\ 4 & 1 & 1 & 0 & 0 \end{vmatrix} \]

Interchanging \(R_1\) and \(R_2\).

\[ A = - \begin{vmatrix} 1 & 1 & 3 & 1 & 2 \\ 2 & 3 & 1 & 0 & 1 \\ 2 & 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 1 & 2 \\ 4 & 1 & 1 & 0 & 0 \end{vmatrix} \]
\[ \Big\downarrow R_2 = R_2 - 2R_1 \]
\[ \Big\downarrow R_3 = R_3 - 2R_1 \]
\[ \Big\downarrow R_4 = R_4 - 3R_1 \]
\[ \Big\downarrow R_5 = R_5 - 4R_1 \]
\[ = - \begin{vmatrix} 1 & 1 & 3 & 1 & 2 \\ 0 & 1 & -5 & -2 & -3 \\ 0 & -1 & -4 & 1 & 0 \\ 0 & -1 & -8 & -2 & -4 \\ 0 & -3 & -11 & -4 & -8 \end{vmatrix} \]

Expand from \(C_1\)

\[ = - \begin{vmatrix} 1 & -5 & -2 & -3 \\ -1 & -4 & 1 & 0 \\ -1 & -8 & -2 & -4 \\ -3 & -11 & -4 & -8 \end{vmatrix} \]
\[ \Big\downarrow R_2 = R_2 + R_1 \]
\[ \Big\downarrow R_3 = R_3 + R_1 \]
\[ \Big\downarrow R_4 = R_4 + 3R_1 \]
\[ = - \begin{vmatrix} 1 & -5 & -2 & -3 \\ 0 & -9 & -1 & -3 \\ 0 & -13 & -4 & -7 \\ 0 & -26 & -10 & -17 \end{vmatrix} \]

Expand from \(C_1\)

\[ = - \begin{vmatrix} -9 & -1 & -3 \\ -13 & -4 & -7 \\ -26 & -10 & -17 \end{vmatrix} \]

Taking \(-1\) common out from all rows

\[ = \begin{vmatrix} 9 & 1 & 3 \\ 13 & 4 & 7 \\ 26 & 10 & 17 \end{vmatrix} \]

Interchange \(C_1\) and \(C_2\)

\[ = - \begin{vmatrix} 1 & 9 & 3 \\ 4 & 13 & 7 \\ 10 & 26 & 17 \end{vmatrix} \]
\[ \Big\downarrow C_2 = C_2 - 9C_1 \]
\[ \Big\downarrow C_3 = C_3 - 3C_1 \]
\[ = - \begin{vmatrix} 1 & 0 & 0 \\ 4 & -23 & -5 \\ 10 & -64 & -13 \end{vmatrix} \]

Expand from \(R_1\)

\[ = - \begin{vmatrix} -23 & -5 \\ -64 & -13 \end{vmatrix} = -((-23)(-13) - (-5)(-64)) = -(299 - 320) = 21 \]

An Algorithm to Evaluate the Determinant

Step 1

Interchange rows of \(A\) to bring a non zero entry2 to \((1, 1)\) position unless rest of the entries in that column are \(0\).

Step 2

Perform row operations3 on \(A\) to reduce \(C_1\) to \(\begin{bmatrix}a_{ij}\\ 0 \\ \vdots \\ 0\end{bmatrix}\).
Expand \(\det (A)\) by \(C_1\).

Step 3

Convert \(A\) to a upper triangular1 form.

Step 4

\(\det(A)\) is the product of all diagonal entries.2

Example

\[ A = \begin{bmatrix} 2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{bmatrix} \]

Taking \(2\) common from \(R_1\)

\[ \det (A) = 2 \begin{vmatrix} 1 & -4 & 3 & 4 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{vmatrix} \]
\[ \Big\downarrow R_2 = R_2 - 3R_1 \]
\[ \Big\downarrow R_3 = R_3 + 3R_1 \]
\[ \Big\downarrow R_4 = R_4 - R_1 \]
\[ \det (A) = 2 \begin{vmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & -3 & 2 \end{vmatrix} \]
\[ \Big\downarrow R_4 = R_4 - \frac 1 2 R_3 \]
\[ \det (A) = 2 \begin{vmatrix} 1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1 \end{vmatrix} \]
\[= 2 \times (1)(3)(-6)(1) = -36\]

Remarks

If \(U\) is the echelon3 form of \(A\) then.
If \(r\) is the number of row interchanges3 to convert \(A\) to \(U\) then.

\[ \det(A) = \begin{cases} (-1)^r \cdot (\prod_{i = 1}^n [a_{ii}] \in U) & \text{if } A^{-1} \text{ exists}\\ 0 & \text{if } A^{-1} \text{ doesn't exists}\\ \end{cases} \]

Theorem

\[\det (A_{n \times n}) = \det(A_{n \times n}^T)\]

Theorem

If \(A\) and \(B\) are square matrices.2

\[\det (AB) = \det (A) \times \det(B)\]

In general, \(\det(A + B) \neq \det(A) + \det(B)\)

References