Skip to content

23. Coordinate System

Dated: 03-06-2025

Theorem

Let \(B =\{\vec b_1, \vec b_2, \ldots, \vec b_n\}\) be a basis for a vector space1 \(\mathbb V\). Then

\[\vec x = c_1 \vec b_1, \, c_2 \vec b_2, \ldots, \, c_n \vec b_n \quad \forall \vec x \in \mathbb V\]

Definition (\(B\) Coordinate of \(\vec x\))

The \(c_1, c_2, \ldots, c_n\) are the scalar weights, called the \(B\) coordinates of \(\vec x\).

Example

Let \(S = \{\vec v_1, \vec v_2, \vec v_3\}\) be the basis for \(\mathbb R^3\) where \(\vec v_1 = \langle1, 2, 1\rangle\), \(\vec v_2 = \langle2, 9, 0\rangle\) and \(\vec v_3 = \langle3, 3, 4\rangle\)

  • Find the coordinate vector of \(\vec v = \langle5, -1, 9\rangle\) with respect to \(S\).
  • Find the vector2 \(\vec v \in \mathbb R^3\) whose coordinate vector with respect to the basis \(S\) is \([\vec v]_S = \langle-1, 3, 2\rangle\)

Solution

Part 1

\[\because \vec x = c_1 \vec v_1 + c_2 \vec v_2 + c_3 \vec v_3\]
\[\langle5, -1, 9\rangle = c_1 \langle1, 2, 1\rangle + c_2\langle2, 9, 0\rangle + c_3 \langle3, 3, 4\rangle\]
\[ \begin{array}{cccccccccc} & c_1 &+ &2& c_2 &+ &3& c_3 &= &5\\ 2 &c_1 &+ &9&c_2 &+ &3&c_3 &= &-1\\ &c_1 &&&&+ &4&c_3 &= &9\\ \end{array} \]

After solving this linear system,3 we have

\[c_1 = 1, c_2 = -1, c_3 = 2\]
\[\implies [\vec v]_S = \langle1, -1, 2\rangle\]

Part 2

\[[\vec v]_S = \langle-1, 3, 2\rangle\]

\(\(c_1 = -1, c_2 = 3, c_3 = 2\)\)

Plugging it into the original equation, we have

\[(-1) \langle1, 2, 1\rangle + (3)\langle2, 9, 0\rangle + (2)\langle3, 3, 4\rangle\]
\[\vec v= \langle11, 31, 7\rangle\]

Change-of-coordinates Matrix

\[\vec x = c_1 \vec b_1 + c_2 \vec b_2 + \ldots + c_n \vec b_n\]
\[ \vec x = \begin{bmatrix} \vec b_1 & \vec b_2 & \cdots & \vec b_n \end{bmatrix} \begin{bmatrix} c_1\\ c_2\\ \vdots\\ c_n \end{bmatrix} = P_B[\vec x]_B \]

The vector1 \(P_B\) is called the change of coordinates matrix from \(B\) to standard basis of \(\mathbb R^n\).

Coordinate Mapping

Let \(B = \{\vec b_1, \vec b_2, \ldots, b_n\}\) be a basis for a vector space1 \(\mathbb V\). Then the mapping \(\vec x \to [\vec x]_B\) is a one to one linear transformation4 from \(\mathbb V\) onto \(\mathbb R^n\).
This transformation4 is called isomorphism(iso meaning "same" and morph meaning "form").

References

Read more about notations and symbols.


  1. Read more about vector spaces

  2. Read more about vectors

  3. Read more about linear systems

  4. Read more about linear transformations