Skip to content

26. Change of Basis

Dated: 11-06-2025

Example

Consider 2 basis \(\mathbb B = \{\vec b_1, \vec b_2\}\) and \(\mathbb C = \{\vec c_1, \vec c_2\}\) for a vector space1 \(\mathbb V\) such that \(\vec b_1 = 4 \vec c_1 + \vec c_2\) and \(\vec b_2 = -6 \vec c_1 + \vec c_2\).
Suppose that

\[\vec x = 3 \vec b_1 + \vec b_2\]
\[ \implies [\vec x]_{\mathbb B} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \]

Find \([\vec x]_{\mathbb C}\).

Solution

\[[\vec x]_{\mathbb C} = [3 \vec b_1 + \vec b_2]_{\mathbb C}\]
\[= 3[\vec b_1]_{\mathbb C} + [\vec b_2]_{\mathbb C}\]
\[ = \begin{bmatrix} [\vec b_1]_{\mathbb C} & [\vec b_2]_{\mathbb C} \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \]
\[ \because [\vec b_1]_{\mathbb C} = \begin{bmatrix} 4\\ 1 \end{bmatrix} \quad [\vec b_2]_{\mathbb C} = \begin{bmatrix} -6\\ 1 \end{bmatrix} \]
\[ [\vec x]_{\mathbb C} = \begin{bmatrix} 4 & -6\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3\\ 1 \end{bmatrix} = \begin{bmatrix} 6\\ 4 \end{bmatrix} \]

Theorem

Let \(\mathbb B = \{\vec b_1, \ldots, \vec b_n\}\) and \(\mathbb C = \{\vec c_1, \ldots, \vec c_n\}\) be bases of a vector space1 \(\mathbb V\) then there exists \(n \times n\) matrix2 \(P_{\mathbb C \leftarrow \mathbb B}\) such that

\[[\vec x]_{\mathbb C} = P_{\mathbb C \leftarrow \mathbb B}[\vec x]_\mathbb B\]

Where \(P_{\mathbb C \leftarrow \mathbb B}\) is called change-of-coordinates matrix2 from \(\mathbb B\) to \(\mathbb C\).

\[ P_{\mathbb C \leftarrow \mathbb B} = \begin{bmatrix} [\vec b_1]_\mathbb C & [\vec b_2]_\mathbb C & \cdots & [\vec b_n]_\mathbb C \end{bmatrix} \]

mth501_e_26_1.svg

Commutative diagram for basis transformations.

\[\left(P_{\mathbb C \leftarrow \mathbb B}\right)^{-1} = P_{\mathbb B \leftarrow \mathbb C}\]

References

Read more about notations and symbols.


  1. Read more about vector spaces

  2. Read more about matrices