Skip to content

28. Eigenvalues and Eigenvectors

Dated: 12-06-2025

Fixed Points

A fixed point of an \(n \times n\) matrix1 is a vector2 \(\vec x\) in \(\mathbb R^n\) such that \(A \vec x = \vec x\)
Every square matrix has at least one fixed point namely \(\vec x = 0\).

General procedure to find fixed points of a matrix1 \(A\) is to rewrite the equation \(A \vec x = \vec x\) as \(A \vec x = I \vec x\) or as

\[(I - A) \vec x = \vec 0\]

Theorem

If \(A\) is an \(n \times n\) matrix1 then following are equivalent

  • \(A\) has non trivial fixed points
  • \(I - A\) is a singular matrix1
  • \(\det(I - A) = 0\)

Example

\[ A = \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix} \]
\[(I - A)\vec x = \vec 0\]
\[ \left( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 3 & 6 \\ 1 & 2 \end{bmatrix} \right) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]
\[ \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

General solution of this system is

\[x = 2t, \, y = t\]

These are parametric equations of the line3 \(y = \frac x 2\)

Eigenvalues and Eigenvectors

In the following equation

\[A \vec x = \lambda \vec x\]

If there is a non zero vector2 which satisfies this equation then it is called the eigenvector and \(\lambda\) is a scalar, called the eigenvalue.

Eigen Space

The set of all solutions of \((A - \lambda I) \vec x = \vec 0\) is just the null space4 of the matrix1 \(A - \lambda I\). So this set5 is a subspace6 of \(\mathbb R^n\) and is called eigenspace of \(A\) corresponding to \(\lambda\).

Example

\[A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}\]

Find a basis for corresponding eigen space where eigen value of a matrix1 is \(2\).

Solution

\[ A - 2 I = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix} \]

Now we will row reduce7 the augmented matrix.

\[ \left[ \begin{array}{ccc|c} 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ \end{array} \right] \]
\[\Bigg\downarrow R_2 - R_1\]
\[\Bigg\downarrow R_3 - R_1\]
\[ \left[ \begin{array}{ccc|c} 2 & -1 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right] \]

The general solution is

\[2x_1 - x_2 + 6 x_3 = 0\]
\[x_2 = t, \, x_3 = s\]
\[2x_1 = t - 6s\]
\[x_1 = \frac t 2 - 3s\]
\[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t/2 - 3s \\ t \\ s \end{bmatrix} = \begin{bmatrix} t/2 \\ t \\ 0 \end{bmatrix} + \begin{bmatrix} -3s \\ 0 \\ s \end{bmatrix} = t \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \]
\[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \]
\[ \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} , \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ is a basis} \]

The most direct way to find eigen values is to rewrite \(A \vec x = \lambda \vec x\) as \(A \vec x = \lambda I \vec x\).

\[\implies (\lambda I - A) \vec x = \vec 0\]

The above equation has non trivial solutions if

\[\det (\lambda I - A) \vec x = \vec 0\]

This equation is called the characteristic equation.

Theorem

If \(\lambda\) is a scalar and \(A\) is a \(n \times n\) matrix1 then the following statements are true

  • \(\lambda\) is an eigenvalue of \(A\).
  • \(\lambda\) is the solution of the equation \(\det(\lambda I - A) = \vec 0\)
  • The linear system8 \((\lambda I - A) \vec x = 0\) has non trivial solutions.

Eigenvalues of Triangular Matrices

The characteristic polynomial for a triangular matrix9 is

\[\det(\lambda I - A) = (\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33})\ldots(\lambda - a_{nn})\]

Which implies that eigen values are

\[\lambda_1 = a_{11}, \, \lambda_2 = a_{22}, \, \ldots, \, \lambda_n = a_{nn}\]

Eigenvalues of Powers of a Matrix

\[A^2 \vec x = A (A \vec x) = A( \lambda \vec x) = \lambda (A \vec x) = \lambda (\lambda \vec x) = \lambda^2 \vec x\]

Theorem

If \(\vec x\) is the corresponding eigen vector of \(A\) then eigen value of \(A^k\) is \(\lambda^k\).

Theorem

If \(A\) is an \(n \times n\) matrix,1 then the following statements are equivalent:

  • The reduced row echelon form7 of \(A\) is \(I_n\).
  • \(A\) is expressible as a product of elementary matrices.10
  • \(A\) is invertible.
  • \(Ax = 0\) has only the trivial solution.
  • \(Ax = b\) is consistent for every vector2 \(b\) in \(\mathbb{R}^n\).
  • \(Ax = b\) has exactly one solution for every vector2 \(b\) in \(\mathbb{R}^n\).
  • The column vectors of \(A\) are linearly independent.11
  • The row vectors of \(A\) are linearly independent.11
  • \(\det(A) \ne 0\).
  • \(\lambda = 0\) is not an eigenvalue of \(A\).

References

Read more about notations and symbols.


  1. Read more about matrices

  2. Read more about vectors

  3. Read more about lines

  4. Read more about null space

  5. Read more about sets

  6. Read more about vector spaces

  7. Read more about row reduction

  8. Read more about linear systems

  9. Read more about triangular matrices

  10. Read more about elementary matrices

  11. Read more about linear independence