Skip to content

29. The Characteristic Equation

Dated: 12-06-2025

\[\det(A - \lambda I) = \vec 0\]

Here \(\lambda\) is the eigenvalue1 and \(I\) is the identity matrix.2 This equation is also called characteristic polynomial.

Example

Find eigen values1 of

\[ A = \begin{bmatrix} 2 & 3\\ 3 & -6 \end{bmatrix} \]
\[(A - \lambda I) \vec x = \vec 0\]
\[ A - \lambda I = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 2-\lambda & 3 \\ 3 & -6-\lambda \end{bmatrix} \]

By definition

\[ \det(A - \lambda I) = \det \left( \begin{bmatrix} 2-\lambda & 3 \\ 3 & -6-\lambda \end{bmatrix} \right) = 0 \]
\[ \det \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad-bc \]

\(\(\det(A-\lambda I) = (2-\lambda)(-6-\lambda)-(3)(3)\)\)

\(\(= -12+6\lambda-2\lambda+\lambda^2-9\)\)

\(\(= \lambda^2+4\lambda-21\)\)

\(\(\lambda^2+4\lambda-21=0\)\)

\(\((\lambda-3)(\lambda+7)=0\)\)

Hence, the eigen values1 are \(3\) and \(-7\).

Similarity

\(A_{n \times n}\) and \(B_{n \times n}\) are similar if there exists and invertible matrix3 \(P\) such that

\[P^{-1}AP = B\]
\[A = PBP^{-1}\]

Similarity Transformation

The act of changing \(A\) into \(P^{-1} A P\) is called a similarity transformation.

Theorem

If \(A_{n \times n}\) and \(B_{n \times n}\) are similar then they have same characteristic polynomial and hence the same eigenvalues.1

Row operations4 on a matrix usually change its eigenvalues.1

Application to Dynamic Systems

Let

\[ A = \begin{bmatrix} .95 & .03 \\ .05 & .97 \end{bmatrix} \]

Analyze the behavior of long term dynamical system defined by

\[\vec x_{k + 1} = A \vec x_k \quad k = 0, 1, 2, \ldots\]

with

\[ x_0 = \begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix} \]

First step is to find eigen values1 of \(A\) and a basis for each eigenspace.1

\[\det(A - \lambda I) = 0\]
\[ 0 = \det \left( \begin{bmatrix} 0.95 - \lambda & 0.03 \\ 0.05 & 0.97 - \lambda \end{bmatrix} \right) = (0.95-\lambda)(0.97-\lambda) - (0.03)(0.05) \]

\(\(= \lambda^2 - 1.92\lambda + 0.92\)\)

Applying quadratic formula

\[\lambda = \frac{1.92 \pm \sqrt{(1.92)^2 - 4(0.92)}}{2} = \frac{1.92 \pm \sqrt{0.0064}}{2} = \frac{1.92 \pm 0.08}{2} = 1 \text{ or } 0.92\]
\[Ax = \lambda x\]

\(\((Ax - \lambda x) = 0\)\)

\(\((A-\lambda I)x = 0\)\)

For \(\lambda = 1\)

\[ \begin{bmatrix} 0.95 & 0.03 \\ 0.05 & 0.97 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \]

$$ \begin{bmatrix} -0.05 & 0.03 \ 0.05 & -0.03 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = 0 $$

\[-0.05x_1 + 0.03 = 0\]
\[0.05x_1 - 0.03x_2 = 0 \implies x_1 = \frac{0.03}{0.05}x_2 \implies x_1 = \frac{3}{5}x_2\]

In parametric form, it becomes

\[x_1 = \frac{3}{5}t \text{ and } x_2 = t\]

For \(\lambda = 0.92\)

\[ \begin{bmatrix} 0.95 & 0.03 \\ 0.05 & 0.97 \end{bmatrix} - \begin{bmatrix} 0.92 & 0 \\ 0 & 0.92 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0 \]

$$ \begin{bmatrix} 0.03 & 0.03 \ 0.05 & 0.05 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = 0 $$

\[0.03x_1 + 0.03x_2 = 0\]

\(\(0.05x_1 + 0.05x_2 = 0 \implies x_1 = -x_2\)\)

\[x_1 = t \text{ and } x_2 = -t\]

Thus, the eigen vectors1 corresponding to \(\lambda = 1\) and \(\lambda = .92\) are

\[ v_1 = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \]
\[ v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \]

Next step is to write \(x_0\) in terms of \(v_1\) and \(v_2\).
\(\{v_1, v_2\}\) is basis for \(\mathbb R^2\).
So there exists weights \(c_1\) and \(c_2\) such that

\[ x_0 = c_1 \vec{v}_1 + c_2 \vec{v}_2 = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \]

$$ \begin{bmatrix} c_1 \ c_2 \end{bmatrix} = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}^{-1} x_0 = \begin{bmatrix} 3 & 1 \ 5 & -1 \end{bmatrix}^{-1} \begin{bmatrix} 0.60 \ 0.40 \end{bmatrix} $$

\[ \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix}^{-1} = \frac{1}{ \begin{vmatrix} 3 & 1 \\ 5 & -1 \end{vmatrix} } \text{Adj} \begin{bmatrix} 3 & 1 \\ 5 & -1 \end{bmatrix} = \frac{1}{-8} \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix} \]
\[ \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{-8} \begin{bmatrix} -1 & -1 \\ -5 & 3 \end{bmatrix} \begin{bmatrix} 0.60 \\ 0.40 \end{bmatrix} = \begin{bmatrix} 0.125 \\ 0.225 \end{bmatrix} \]

Since \(v_1\) and \(v_2\) are eigen vectors1 of \(A\) then

\[A v_1 = (1)v_1\]
\[A v_2 = (0.92)v_2\]
\[\vec x_1 = A \vec x_0\]
\[= c_1 A v_1 + c_2 A v_2\]
\[= c_1 v_1 + c_2 (0.92) v_2\]
\[x_2 = A x_1 = c_1 A v_1 + c_2 (0.92) A v_2 = c_1 v_1 + c_2 (0.92)^2 v_2\]
\[\vec{x}_k = c_1 \vec{v}_1 + c_2 (0.92)^k \vec{v}_2 \quad k \ge 0\]
\[ \vec{x}_k = 0.125 \begin{bmatrix} 3 \\ 5 \end{bmatrix} + 0.225 (0.92)^k \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad k \ge 0 \]

As

\[ k \to \infty \implies (0.92)^k \to 0 \implies \vec x_k = \begin{bmatrix} .375 \\ .625 \end{bmatrix} = .125 \vec v_1 \]

References

Read more about notations and symbols.


  1. Read more about eigen values and vectors

  2. Read more about matrices

  3. Read more about invertible matrices

  4. Read more about row operations