Skip to content

30. Diagonalization

Dated: 13-06-2025

Diagonalization is a process of transforming a vector1 \(A\) into \(PDP^{-1}\) where \(D\) is a diagonal matrix2 and \(P\) is an invertible matrix.3

Example

Let

\[ A = \begin{bmatrix} 7 & 2\\ -4 & 1 \end{bmatrix} \]

Find a formula for \(A^k\) where

\[ D = \begin{bmatrix} 5 & 0\\ 0 & 3 \end{bmatrix} \]
\[ P = \begin{bmatrix} 1 & 1\\ -1 & -2 \end{bmatrix} \]
\[\because A = PDP^{-1}\]

Finding \(P^{-1}\), we get

\[P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}\]
\[A^2 = A \cdot A\]
\[= (PDP^{-1})(PDP^{-1})\]

Due to associative property4

\[= PD(P^{-1}P)DP^{-1}\]
\[= PDIDP^{-1}\]
\[= PDDP^{-1}\]
\[= PD^2P^{-1}\]
\[A^3 = A \cdot A^2\]
\[= (PDP^{-1})PD^2P^{-1}\]

Again, due to associative property4

\[= PD(P^{-1}P)D^2P^{-1}\]
\[= PDID^2P^{-1}\]
\[= PDD^2P^{-1}\]
\[= PD^3P^{-1}\]
\[\therefore A^k = PD^kP^{-1}\]
\[ = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5^k & 0 \\ 0 & 3^k \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} \]
\[ = \begin{bmatrix} 5^k & 3^k \\ -5^k & -2 \cdot 3^k \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix} \]

$$ = \begin{bmatrix} 2 \cdot 5^k - 3^k & 5^k - 3^k \ -2 \cdot 5^k + 2 \cdot 3^k & -5^k + 2 \cdot 3^k \end{bmatrix} $$

Theorem

An \(n \times n\) matrix5 \(A\) is diagonalizable if and only if \(A\) has \(n\) linearly independent6 eigenvectors.7

Diagonalizing Matrices

\[ A = \begin{bmatrix} 1 & 3 & 3\\ -3 & -5 & -3\\ 3 & 3 & 1 \end{bmatrix} \]

Step 1

Find eigen values7 of \(A\).

\[0 = \det(A - \lambda I)\]
\[= - \lambda^3 - 3 \lambda^2 + 4\]
\[= -(\lambda - 1)(\lambda + 2)^2\]

Therefore, the eigen values7 are \(\lambda = 1\) and \(\lambda = -2\).

Step 2

Now we need 3 eigen vectors7 because \(A\) is a \(3 \times 3\) matrix.5

Basis vector1 For \(\lambda = 1\)

\[(A - \lambda I) \vec x = \vec 0\]
\[ \begin{bmatrix} 0 & 3 & 3 \\ -3 & -6 & -3 \\ 3 & 3 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]

After applying row operations8

\[ \begin{bmatrix} 0 & 1 & 1 \\ 3 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \]
\[ \begin{aligned} x_2 + x_3 = 0\\ 3x_1 + 3x_2 = 0\\ \end{aligned} \]
\[x_1 = t, x_2 = -t, x_3 = t\]
\[ \therefore v_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \]

Basis vector1 For \(\lambda = -2\)

\[(A-\lambda I)x = 0\]

$$ \begin{bmatrix} 3 & 3 & 3 \ -3 & -3 & -3 \ 3 & 3 & 3 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ 0 \end{bmatrix} $$

\[ \begin{aligned} 3x_1 + 3x_2 + 3x_3 = 0 \\ -3x_1 - 3x_2 - 3x_3 = 0 \\ 3x_1 + 3x_2 + 3x_3 = 0 \\ \end{aligned} \]
\[x_1 = - s - t, x_2 = s, x_3 = t\]
\[ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -s-t \\ s \\ t \end{bmatrix} = \begin{bmatrix} -s \\ s \\ 0 \end{bmatrix} + \begin{bmatrix} -t \\ 0 \\ t \end{bmatrix} \]
\[= s \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}\]
\[= x_2 \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}\]
\[ \therefore v_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \]

Step 3

Check if \(\{\vec v_1, \vec v_2, \vec v_3\}\) is linearly independent6

\[ P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \]

Step 3

The order of the eigen values7 must match the order chosen for the columns1 of \(P\).

\[ D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix} \]

Theorem

An \(n \times n\) matrix5 with \(n\) distinct eigenvalues7 is diagonalizable.

Theorem

Let \(A\) be an \(n \times n\) matrix5 whose distinct eigen values are \(\lambda_1, \ldots, \lambda_p\).

  • Diagonalizable \(\iff\) enough independent6 eigenvectors7 \(\iff\) Eigenspace7 dimension = Eigenvalue7 multiplicity.
  • To build a diagonal matrix,2 find a basis of \(\mathbb R^2\) from eigenvectors7 of \(A\).

References

Read more about notations and symbols.


  1. Read more about vectors

  2. Read more about diagonal matrix

  3. Read more about invertible matrices

  4. Read more about associativity

  5. Read more about matrices

  6. Read more about linear dependence

  7. Read more about eigen values, vectors and space

  8. Read more about row operations