Skip to content

Discrete Dynamical Systems

Dated: 15-06-2025

In this section, we will suppose that \(A\) is diagonalizable1 with \(n\) linearly independent2 eigen vectors3 \(\vec v_1, \ldots, \vec v_n\) and eigen values3 \(\lambda_1, \ldots, \lambda_n\).
Let the eigen vectors3 be arranged in a way such that

\[|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|\]

Since \(\{\vec v_1, \ldots, \vec v_n\}\) are basis for \(\mathbb R^n\).

\[\vec x_0 = c_1 \vec v_1 + c_2 \vec v_2 + \cdots + c_n \vec v_n\]
\[\vec x_1 = A \vec x_0\]
\[= c_1 A \vec v_1 + c_2 A \vec v_2 + \ldots + c_n A \vec v_n\]
\[= c_1 \lambda_1 \vec v_1 + c_2 \lambda_2 \vec v_2 + \cdots + c_n \lambda_n \vec v_n\]

In general,

\[\vec x_k = c_1 (\lambda_1)^k \vec v_1 + \cdots + c_n (\lambda_n)^k \vec v_n \quad k \ge 0\]

Trajectory of a Dynamical System

Let \(\vec x_0 \in \mathbb R^2\) be an initial value and ran though the transformation4 \(\vec x \to A \vec x\) repeatedly then the graph of \(\{\vec x_1, \vec x_2, \ldots, \vec x_n\}\) is called the trajectory of a dynamical system.

Relationship between eigen values3 and trajectory
  • Origin behaves as attractor if eigen value3 \(< 1\).
  • Origin behaves as repellor if eigen value3 \(> 1\).
  • Origin behaves as saddle point if one eigen value3 \(> 1\) and other eigen value3 is \(< 1\).

Change of Variable

Let \(\{\vec v_1, \ldots, \vec v_n\}\) be the eigen vectors3 serving as basis for \(\mathbb R^n\).
Let \(P = \begin{bmatrix}\vec v_1 & \cdots & \vec v_n\end{bmatrix}\) and \(D\) be the diagonal matrix5 with corresponding eigen values3 on its diagonal.

Given a sequence \(\{\vec x_k\}\) satisfying the relation \(\vec x_{k + 1} = A \vec x_k\), define a new sequence \(\{\vec y_k\}\) such that \(\vec x_k = P \vec y_k\).

\[\vec x_{k + 1} = A \vec x_k\]
\[\because \vec x_k = P \vec y_k\]
\[\vec y_{k + 1} = AP \vec y_k\]
\[\because A = PDP^{-1}\]
\[P\vec y_{k + 1} = (PDP^{-1})P \vec y_k\]
\[P\vec y_{k + 1} = PD(P^{-1}P) \vec y_k\]
\[P\vec y_{k + 1} = PDI \vec y_k\]
\[P\vec y_{k + 1} = PD \vec y_k\]
\[\vec y_{k + 1} = D \vec y_k\]

Denote \(\vec y_k\) as \(\vec y(k)\) and entries in \(\vec y(k)\) as \(\vec y_1(k), \ldots, \vec y_n(k)\)

\[ \begin{bmatrix} \vec y_1(k+1) \\ \vec y_2(k+1) \\ \vdots \\ \vec y_n(k+1) \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{bmatrix} \begin{bmatrix} \vec y_1(k) \\ \vec y_2(k) \\ \vdots \\ \vec y_n(k) \end{bmatrix} \]

Complex Eigenvalues3

Relationship between complex eigen values3 and trajectory

If a matrix6 has 2 complex eigen values3 and absolute value of either eigen value3 is

  • \(> 1\) then origin behaves as a repellor with iterations of \(\vec x_0\) spiraling outwards.
  • \(< 1\) then origin behaves as a attractor with iterations of \(\vec x_0\) spiraling inwards.

References

Read more about notations and symbols.


  1. Read more about diagonalization

  2. Read more about linear dependency

  3. Read more about eigen vectors

  4. Read more about linear transformations

  5. Read more about diagonal matrices

  6. Read more about matrices