Skip to content

34. Applications to Differential Equations

Dated: 17-06-2025

Differential Equations

A differential equation is any equation which contains derivatives,1 either ordinary derivatives1 or partial derivatives.2

System of Linear Differential Equations3

A system of linear differential equations3 can be expressed as

\[ \begin{array}{ccccc} x_1^\prime &= &a_{11} x_1 &+ \ldots + &a_{1n}x_n \\ x_2^\prime &= &a_{21} x_1 &+ \ldots + &a_{2n}x_n \\ \vdots &&\vdots &&\vdots \\ x_n^\prime &= &a_{n1} x_1 &+ \ldots + &a_{nn}x_n \\ \end{array} \]
\[x^\prime = A x\]

Where

\[ x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \\ \end{bmatrix} \]
\[ x^\prime(t) = \begin{bmatrix} x_1^\prime(t) \\ \vdots \\ x_n^\prime(t) \\ \end{bmatrix} \]
\[ A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \\ \end{bmatrix} \]

Superposition of Solutions

If \(u\) and \(v\) are solutions to \(x^\prime = Ax\) then their linear combination4 (i.e. \(au + bv\)) is also a solution.
This property is called superposition of solutions.

Fundamental Set5 of Solutions

If \(A\) is an \(n \times n\) matrix6 with \(n\) linearly independent7 functions8 then each solution to the equation \(x^\prime = Ax\) is a linear combination4 of those functions8 and set5 of these functions8 is the basis for the solution set which is also \(n\) dimensional vector space9 of functions.8

Initial Value Problem

If a vector9 \(\vec x_0\) is given then the initial value problem is to construct a function8 \(x\) such that \(x^\prime = Ax\) and \(x(0) = x_0\).

Example

Find the solution to \(x^\prime = Ax\) where

\[ A = \begin{bmatrix} 3 & 0\\ 0 & -5 \end{bmatrix} \]
\[ \begin{bmatrix} x_1^\prime(t) \\ x_2\prime(t) \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \]
\[\implies x_1^\prime(t) = 3x_1(t) \text{ and } x_2^\prime(t) = -5x_2(t)\]
\[\frac{d x_1(t)}{dt} = 3x_1\]
\[\frac {d x_1} {x_1} = 3dt\]

Integrating10 both sides

\[\int \frac{dx_1}{x_1} = 3 \int dt\]

\(\(\ln x_1 = 3t + \ln c_1\)\)

\(\(\ln x_1 - \ln c_1 = 3t\)\)

\(\(\ln\left(\frac{x_1}{c_1}\right) = 3t\)\)

Taking anti log11 on both sides

\[\frac{x_1}{c_1} = e^{3t}\]

\(\(x_1(t) = c_1 e^{3t}\)\)

Similarly, for \(x^\prime_2(t) = -5x_2(t)\), solution will be

\[x_2(t) = c_2 e^{-5t}\]
\[ \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} c_1 e^{3t} \\ c_2 e^{-5t} \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} e^{3t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} \]

Observation

General solution to \(x^\prime = Ax\) might be of the form

\[x(t) = v e^{\lambda t}\]

Multiply \(A\) on both sides

\[Ax(t) = Ave^{\lambda t}\]

where \(\lambda\) is a scalar and \(v\) is some non zero vector12
Differentiating1 original equation with respect to \(t\).

\[x^\prime(t) = \lambda ve^{\lambda t}\]
\[x^\prime(t) = Ax(t) \iff \lambda v = Av\]

Eigenfunctions

Each pair of eigenvalue13 and its corresponding eigenvector provides a solution of the equation \(x^\prime = Ax\) which is called eigenfunctions of the differential equation.3

Decoupling a Dynamical System

Let a dynamical system be defined by \(x^\prime = Ax\) where \(A\) is diagonalizable.14
Suppose that eigen functions for \(A\) are

\[\vec v_1e^{\lambda_1 t}, \ldots, \vec v_ne^{\lambda_n t}\]

where \(\{\vec v_1, \ldots, \vec v_n\}\) are linearly independent7 and let \(P = \begin{bmatrix}\vec v_1 & \cdots & \vec v_n\end{bmatrix}\) and \(D\) be diagonal matrix15 with entries as \(\lambda_1, \ldots, \lambda_n\) so that \(A = PDP^{-1}\).
Now replace \(x(t) = Py(t)\) and substitute in \(x^\prime = A x\) and in the end, we will get

\[y^\prime(t) = Dy(t)\]
\[ \begin{bmatrix} y_1^\prime(t) \\ y_2^\prime(t) \\ \vdots \\ y_n^\prime(t) \\ \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & 0\\ 0 & \cdots & 0 & \lambda_n \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \\ \end{bmatrix} \]

Change of variable from \(x\) to \(y\) has decoupled the system because now the derivative1 of each function8 \(y_k\) depends only on \(y_k\).

\[\because y_1^\prime = \lambda_1y_1\]
\[\implies y_1(t)= \lambda_1 e^{\lambda_1 t}\]
\[ y(t) = \begin{bmatrix} c_1 e^{\lambda_1 t} \\ \vdots \\ c_n e^{\lambda_n t} \end{bmatrix}, \text{ where } \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix} = y(0) = P^{-1} x(0) = P^{-1} x_0 \]

To obtain the general solution \(x\) of the original system, compute

\[x(t) = Py(t) = \begin{bmatrix}v_1 & \dots & v_n\end{bmatrix}y(t) = c_1v_1 e^{\lambda_1 t} + \dots + c_nv_n e^{\lambda_n t}\]

This is the eigenfunction expansion

Complex Eigenvalues

Let \(A\) be a matrix6 and if \(\lambda\) is an eigen value13 then \(\bar \lambda\) is the 2nd eigen value.13
Similarly, if \(\vec v\) is an eigen vector13 then \(\bar{\vec v}\) is the 2nd eigen vector.13
The solutions for \(x^\prime = Ax\) are

\[x_1(t) = ve^{\lambda t}, \ x_2(t) = \bar v e^{\bar \lambda t}\]
\[x_2(t) = \overline{x_1(t)}\]
\[\textbf{Re }(ve^{\lambda t}) = \frac 1 2 \left(x_1(t) + \overline{x_1(t)}\right)\]
\[\textbf{Im }(ve^{\lambda t}) = \frac 1 {2i} \left(x_1(t) - \overline{x_1(t)}\right)\]
\[\because e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots\]
\[e^{\lambda t} = 1 + \lambda t + \frac{(\lambda t)^2}{2!} + \dots + \frac{(\lambda t)^n}{n!} + \dots\]
\[\because \lambda = a + b \iota\]
\[e^{(a+b \iota)t} = e^{at} e^{\iota bt} = e^{at} (\cos bt + \iota \sin bt)\]
\[\therefore ve^{\lambda t} = (\textbf{Re } v + \iota \textbf{Im } v) \cdot e^{at} (\cos bt + \iota \sin bt)\]

After working it out, we will get

\[ve^{\lambda t} = e^{at}(\textbf{Re }v \cos(bt) - \textbf{Im }v \sin(bt)) + \iota e^{at}(\textbf{Re }v \sin(bt) - \textbf{Im }v \cos(bt))\]

Solutions of \(x^\prime= Ax\) are

\[y_1(t) = \textbf{Re } x_1(t) = [\textbf{Re }v \cos(bt) - \textbf{Im }v \sin(bt)]e^{at}\]
\[y_2(t) = \textbf{Im } x_1(t) = [\textbf{Re }v \sin(bt) + \textbf{Im }v \cos(bt)]e^{at}\]

References

Read more about notations and symbols.


  1. Read more about derivatives

  2. Read more about partial derivatives

  3. Read more about linear differential equation

  4. Read more about linear combinations

  5. Read more about sets

  6. Read more about matrices

  7. Read more about linear independence

  8. Read more about functions

  9. Read more about vector spaces

  10. Read more about integration

  11. Read more about logrithms

  12. Read more about vectors

  13. Read more about eigen values and vectors

  14. Read more about diagonalization

  15. Read more about diagonal matrices