40. Orthogonal Decomposition
Dated: 18-06-2025
Orthogonal Projection
\(\vec y \in \mathbb W \in \mathbb R^n \ \exists \ \vec y^\prime \in \mathbb W\) such that
- \(\vec y^\prime\) is closest to \(\vec y\)
- \((\vec y - \vec y^\prime) \perp \mathbb W\)
Best Approximation Theorem
Let \(\mathbb W\) be a finite dimensional subspace
1 of an inner product space
1 \(\mathbb V\) and \(\vec y \in \mathbb V\).
The best approximation to \(\vec y\) from \(\mathbb W\) is \(\text{Proj}_\vec w^ \vec y\) that is, for every \(\vec w \notin \text{Proj}_\vec w^ \vec y \text{ but } \in \mathbb W\)
\[||\vec y - \text{Proj}_\vec w^\vec y|| < ||\vec y - \vec w||\]
Theorem
If \(\{\vec u_1, \vec u_2, \ldots, \vec u_p\}\) is an orthonormal basis
2 for a subspace
3 \(\mathbb W \in \mathbb R^n\) then
\[\text{Proj}_\vec w ^\vec y = (y \cdot u_1) u_1 + (y \cdot u_2) u_2 + \cdots + (y \cdot u_p) u_p\]
if \(U = \begin{bmatrix}u_1 & u_2 & \cdots & u_p\end{bmatrix}\) then
\[\text{Proj}_\vec w ^\vec y = UU^T \vec y \quad \forall \ \vec y \in \mathbb R^n\]
References
Read more about notations and symbols.
-
Read more about vector spaces. ↩↩
-
Read more about orthonormal basis. ↩
-
Read more about vector spaces. ↩