01. Introduction
Dated: 14-08-2025
Number System
In our daily life, we use \(10\) symbols (\(0, 1, 2, \ldots, 9\)) to do calculations. This number \(10\) is called the base
of the system we are using. Therefore, with a base
\(N\), we need \(0, 1, \ldots, (N - 1)\) symbols to represent any number
.1
Following systems are used in computers usually
Base \(N\) | Number |
---|---|
\(2\) | Binary |
\(8\) | Octal |
\(10\) | Decimal |
\(16\) | Hexadecimal |
Any arbitrary number
1 can be represented as
\[
a = a_m N^m + a_{m-1} N^{m-1} + \dots + a_1 N^1 + a_0 + a_{-1}N^{-1} + \dots + a_{-m}N^{-m}
\]
The decimal number
1 \(1729\) is represented as
\[
(1729)_{10} = 1 \times 10^3 + 7 \times 10^2 + 2 \times 10^1 + 9 \times 10^0
\]
Computers use bits
(\(0\) or \(1\) - base 2
) to represent a number
.1
Conversion Example
Convert \((47)_{10}\) to binary
Base | Post Division | Remainder | |
---|---|---|---|
Starting: | \(2\) | \(47\) | |
\(2\) | \(23\) | \(1\) | |
\(2\) | \(11\) | \(1\) | |
\(2\) | \(5\) | \(1\) | |
\(2\) | \(2\) | \(1\) | |
\(2\) | \(1\) | \(0\) | |
Most Significant Bit |
\(0\) | \(1\) |
\[(47)_{10} = (101111)_2\]
Conversion Example
Convert \((0.7625)_{10}\) to binary
Fractional Part | Operation | Product | Integer |
---|---|---|---|
\(0.7625\) | \(\times2\) | \(1.5250\) | \(1\) |
\(0.5250\) | \(\times2\) | \(1.0500\) | \(1\) |
\(0.0500\) | \(\times2\) | \(0.1000\) | \(0\) |
\(0.1000\) | \(\times2\) | \(0.2000\) | \(0\) |
\(0.2000\) | \(\times2\) | \(0.4000\) | \(0\) |
\(0.4000\) | \(\times2\) | \(0.8000\) | \(0\) |
\(0.8000\) | \(\times2\) | \(1.6000\) | \(1\) |
\(0.6000\) | \(\times2\) | \(1.2000\) | \(1\) |
\(0.1000\) | \(\times2\) | \(0.2000\) | \(0\) |
\[(0.7625)_{10} = (0.110 \overline{00011})_2\]
The number starts from \(110\) but the sequence \(00011\) is represented indefinitely.
Conversion Example
Convert \((59)_{10}\) to binary
and than octal
.
Base | Post Division | Remainder | |
---|---|---|---|
Starting: | \(2\) | \(59\) | |
\(2\) | \(29\) | \(1\) | |
\(2\) | \(14\) | \(1\) | |
\(2\) | \(7\) | \(0\) | |
\(2\) | \(3\) | \(1\) | |
\(2\) | \(1\) | \(1\) | |
Most Significant Bit |
\(0\) | \(1\) |
\[(59)_{10} = (111011)_2\]
\[(111011)_2 = (73)_8\]
References
Read more about notations and symbols.