Skip to content

04. Solution of Non Linear Equations (Regula-Falsi Method)

Dated: 15-08-2025

Assume a function1 is defined over \([x_n, x_{n - 1}]\) such that \(f(x_n) \times f(x_{n - 1}) < 0\) implying that the function1 has opposite signs on both extremes of the interval.2 Now draw a chord connecting \(f(x_n)\) and \(f(x_{n - 1})\). It will intersect the \(x\) axis at some point which will be our initial approximation.
Equation for this chord is

\[ \frac{y - f(x_n)}{f(x_{n-1}) - f(x_n)} = \frac{x - x_n}{x_{n-1} - x_n} \]

Setting \(y = 0\), we get

\[ x_{n + 1} = x = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n) \]

This gives us the first approximation to the root3

Example

Use the Regula-Falsi method to compute a real4 root3 of the equation \(x^3 – 9x + 1 = 0\) defined over \([2, 4]\).

Solution

\[x_1 = 2 \quad \text{and} \quad x_2 = 4\]
\[ f(2) = 2^3 - 9(2) + 1 = 8 - 18 + 1 = -9 \]
\[ f(4) = 4^3 - 9(4) + 1 = 64 - 36 + 1 = 29 \]
\[ x_3 = x_2 - \frac{x_2 - x_1}{f(x_2) - f(x_1)}f(x_2) = 4 - \frac{4-2}{29-(-9)}(29) = 4 - \frac{2(29)}{38} \]
\[ = 4 - \frac{58}{38} = 4 - 1.5263 = 2.4736 \]
\[f (x_3) = 2.4736^3 - 9(2.4736) + 1 = 15.13520-22.2624 + 1 = -6.12644\]
\[\because f(x_2) \times f(x_3) < 0\]
\[ x_4 = x_3 - \frac{x_3 - x_2}{f(x_3) - f(x_2)} f(x_3) = 2.4736 - \frac{2.4736-4}{f(2.4736)-29}(-6.12644) \]
\[ = 2.4736 - \frac{-1.5264}{-6.12644-29}(-6.12644) = 2.4736-(0.04345)(-6.12644) \]
\[ = 2.4736 + 0.26619 = 2.73989 \]
\[f (x_4) = 2.73989 - 9(2.73989) + 1=20.5683-24.65901+1 =- 3. 090707\]
\[\because f(x_2) \times f(x_4) < 0\]
\[ x_5 = x_4 - \frac{x_4 - x_2}{f(x_4) - f(x_2)} f(x_4) = 2.73989 - \frac{2.73989 - 4}{f(2.73989) - 29}(-3.090707) = 2.86125 \]
\[ = 2.73989 - \frac{-1.26011}{-3.090707 - 29}(-3.090707) \]
\[ = 2.73989 + 0.039267(3.090707) = 2.73989 + 0.121363 = 2.86125 \]
\[ f(x_5) = 2.86125 - 9(2.86125) + 1=23.42434-25.75125+1= -1.326868 \]

The initial interval \((x_1, x_2)\) in which the root3 of the equation lies should be sufficiently small.

References

Read more about notations and symbols.


  1. Read more about functions

  2. Read more about intervals

  3. Read more about roots of an equation

  4. Read more about numbers