Skip to content

06. Solution of Non Linear Equations (Newton Raphson Method)

Dated: 15-08-2025

The simplest way to derive a formula for this is to use first 2 terms in the Taylor’s series.1

\[ f(x_{n+1}) = f(x_n) + (x_{n+1} - x_n)f^\prime(x_n) \]

Setting \(f(x_{n + 1}) = 0\), gives

\[ f(x_n) + (x_{n+1} - x_n)f^\prime(x_n) = 0 \]
\[ x_{n+1} = x_n - \frac{f(x_n)}{f^\prime(x_n)} \quad \text{for } n=0,1,2,\ldots \]

Geometrical Interpretation

Let \(f(x) = 0\) meet \(x\) axis at \(x = \alpha\). Then let \(x_0\) be any point near \(\alpha\) so the equation of the tangent at \(x_0\) is

\[ y - f(x_0) = f^\prime(x_0)(x - x_0) \]

This cuts the \(x\) axis at

\[ x_1 = x_0 - \frac{f(x_0)}{f^\prime(x_0)} \]

Similarly,

\[ x_2 = x_1 - \frac{f(x_1)}{f^\prime(x_1)} \]
Notes
  1. When \(f^\prime(x)\) is very large, is when the slope2 is large then \(h\) is small (as assumed) and hence the root3 can be calculated in even less time.
  2. If \(x_0\) is close to root3 then we get the root3 very quickly.
  3. The process will evidently fail if \(f^\prime(x) = 0\) is in the neighborhood of the root.3 In such cases the regula falsi method4 should be used.
  4. If the initial approximation to the root3 is not given, choose two say \(a\) and \(b\) such that \(f(a) \times f(b) < 0\). If \(|f(a)| < |f(b)|\) then take \(a\) as the initial approximation.
  5. Newton’s raphson method is also referred to as the method of tangents.

Example

Find a real5 root3 of the equation \(x^3 – x – 1 = 0\) using Newton - Raphson method, correct to four decimal places.

Solution

\[ f(x) = x^3 - x - 1 \]
\[ f(1) = 1^3 - 1 - 1 = -1 < 0 \]
\[ f(2) = 2^3 - 2 - 1 = 8 - 2 - 1 = 5 > 0 \]

So the root3 lies in \([1, 2]\).

\[f^\prime(x) = 3x^2 - 1\]
\[f^{\prime\prime}(x) = 6x\]
\[f^\prime(1) = 3 \times 1^2 - 1 = 2\]
\[f^\prime(2) = 3 \times 2^2 - 1 = 11\]
\[f^{\prime\prime}(1) = 6(1) = 6\]
\[f^{\prime\prime}(2) = 6(2) = 12\]

Here \(f(2)\) and \(f^{\prime\prime}(2)\) have the same signs so \(x_0 = 2\).

\[x_1 = x_0 - \frac{f(x_0)}{f^\prime(x_0)} = 2 - \frac 5 {11} = 1.54545\]
\[f(x_1) =1.54545^3 - 1.54541 - 1 =3.691177-1.54541-1=1.14576\]
\[f^\prime(x) = 3x^2 - 1 = 3(1.54545)^2 - 1 = 3 (2.38829) - 1 = 7.16487 - 1 = 6.16487\]
\[x_2 = 1.54545 - \frac {1.14576}{6.16525} = 1.35961\]
\[f(x_2) = 1.35961^3 - 1.35961 - 1 = 3.691177 - 1.54541 - 1 = 1.14576\]
\[f^\prime(x) = 3x^2 - 1 = 3(1.54541)^2 - 1 = 3(2.38829) - 1 = 7.16487 - 1 = 6.16487\]
\[x_3 = 1.35961 - \frac{0.15369}{4.54562} = 1.32579, \quad f(x_3) = 4.60959 \times 10^{-3}, \quad f^\prime(x_3) = 4.27316\]
\[x_4 = 1.32579 - \frac{4.60959 \times 10^{-3}}{4.27316} = 1.32471, \quad f(x_4) = -3.39345 \times 10^{-5}, \quad f^\prime(x^4) = 4.26457\]
\[x_5 = 1.32471 + \frac {3.39345 \times 10^{-5}}{4.26457} = 1.324718, \quad f(x_5) = 1.823 \times 10^{-7}\]

The required root3 is \(1.3247\).

Newton-Raphson method falls in category of open methods since there is no bracketing of interval6 is required.

Draw Backs of N-R Method

Divergence at Inflection Points

If the selection of a guess or an iterated value turns out to be close to the inflection point of \(f(x)\) where \(f^{\prime\prime}(x) = 0\), the roots3 start to diverge away from the root.3

\[x_{i + 1} = x_i - \frac{f(x_i)}{f^\prime(x_i)}\]

Division of Zero or near Zero

If an iteration, we come across the division by zero or a near zero number, then we get a large magnitude for the next value, \(x_i+1\).

Root Jumping

In some case where the function7 \(f (x)\) is oscillating and has a number of roots,3 one may choose an initial guess close to a root.3 However, the guesses may jump and converge to some other root.3

Oscillations near Local Maximum and Minimum

Results obtained from N-R method may oscillate about the local max or min without converging on a root3 but converging on the local max or min. Eventually, it may lead to division to a number close to zero and may diverge.

Convergence of N-R Method

\[\because x_{n + 1} = x_n - \frac{f(x_n)}{f^\prime(x_n)}\]
\[\because x_{n+1} = \phi(x_n)\]
\[\phi(x_n) = x_n - \frac{f(x_n)}{f^\prime(x_n)}\]
\[\phi(x) = x - \frac{f(x)}{f^\prime(x)}\]

The iteration method8 converges if

\[|\phi^\prime(x)| < 1\]

Therefore, N-R formula converges, provided

\[|f(x) f^{\prime\prime}(x)| < |f^\prime(x)|^2\]

Definition

Let

\[x_n = \alpha + \epsilon_n\]
\[x_{n + 1} = \alpha + \epsilon_{n + 1}\]

Where \(f(\alpha) = 0\)

\[\epsilon_{n + 1} = K \epsilon_n^p\]
Terms
  • \(\epsilon_n\) is the error involved at the \(n^{th}\) step.
  • \(K\) is a constant.
  • \(p\) is the rate of convergence of the method.
\[\because x_{n + 1} = x_n - \frac{f(x_n)}{f^\prime(x_n)}\]
\[ \alpha + \epsilon_{n+1} = \alpha + \epsilon_n - \frac{f(\alpha+\epsilon_n)}{f'(\alpha+\epsilon_n)} \]
\[ \epsilon_{n+1} = \epsilon_n - \frac{f(\alpha+\epsilon_n)}{f'(\alpha+\epsilon_n)} = \frac{\epsilon_n f'(\alpha+\epsilon_n) - f(\alpha+\epsilon_n)}{f'(\alpha+\epsilon_n)} \]

Using the taylor's series,1 we have

\[ \epsilon_{n+1} = \frac{1}{f'(\alpha) + \epsilon_n f''(\alpha) + \dots} \left\{ \epsilon_n [f'(\alpha) + \epsilon_n f''(\alpha) + \dots] - \left[ f(\alpha) + \epsilon_n f'(\alpha) + \frac{\epsilon_n^2}{2} f''(\alpha) + \dots \right] \right\} \]

Since \(f(\alpha) = 0\), the expression simplifies to

\[ \epsilon_{n+1} = \frac{\epsilon_n^2}{2} f''(\alpha) \frac{1}{f'(\alpha) + \epsilon_n f''(\alpha)} \]
\[ \epsilon_{n+1} = \frac{\epsilon_n^2}{2} f''(\alpha) \frac{1}{f'(\alpha) + \epsilon_n f''(\alpha)} \cdot \frac{f^\prime(x)}{f^\prime(x)} \]
\[ \epsilon_{n+1} = \frac{\epsilon_n^2}{2} \frac{f''(\alpha)}{f^\prime(x)} \frac{f^\prime(x)}{f'(\alpha) + \epsilon_n f''(\alpha)} \]
\[ \epsilon_{n+1} = \frac{\epsilon_n^2}{2} \frac{f''(\alpha)}{f^\prime(x)} \left(\frac{f'(\alpha) + \epsilon_n f''(\alpha)}{f^\prime(x)}\right)^{-1} \]
\[ \epsilon_{n+1} = \frac{\epsilon_n^2}{2} \frac{f''(\alpha)}{f^\prime(x)} \left(\frac{f'(\alpha)}{f'(\alpha)} + \frac{\epsilon_n f''(\alpha)}{f^\prime(x)}\right)^{-1} \]
\[ \epsilon_{n+1} = \frac{\epsilon_n^2}{2} \frac{f''(\alpha)}{f^\prime(x)} \left(1+ \frac{\epsilon_n f''(\alpha)}{f^\prime(x)}\right)^{-1} \]
\((1 + x)^{-1} \approx (1 - x) \quad |x| << 1\)
  • \((1 + x)^{-1} = 1 - x + x^2 - x^3 + \cdots\)
  • \((1 + x)^{-1} = (1 - x) + O(x^2) \quad \because (x \to 0)\)
\[ \epsilon_{n+1} = \frac{\epsilon_n^2}{2} \frac{f''(\alpha)}{f^\prime(x)} \left(1 - \frac{\epsilon_n f''(\alpha)}{f^\prime(x)} + O\left(e^2_n\right)\right) \]
\[ \epsilon_{n + 1} = \frac{\epsilon_n^2}{2} \frac{f^{\prime\prime}(\alpha)}{f^\prime(\alpha)} - \frac{\epsilon_n^3}{2}\left(\frac{f^{\prime\prime}(\alpha)}{f^\prime(\alpha)}\right)^2 + O\left(\epsilon_n^4\right) \]
\[ \epsilon_{n + 1} = \frac{\epsilon_n^2}{2} \frac{f^{\prime\prime}(\alpha)}{f^\prime(\alpha)} + O\left(\epsilon_n^3\right) \]

Neglecting the terms which are \(\epsilon_n^3\) or of higher order, we get

\[\epsilon_{n + 1} = K \epsilon_n^2\]
\[K = \frac{f^{\prime\prime}(\alpha)}{2f^\prime(\alpha)}\]

It shows that N-R method has second order convergence or converges quadratically.

Example

Set up Newton’s scheme of iteration for finding the square root of a positive number \(N\).

Solution

\[x = \sqrt N\]
\[x^2 = N\]
\[x^2 - N = 0\]
\[f(x) = x^2 - N\]

By Newton’s method, we have

\[x_{n + 1} = x_n - \frac{f(x_n)}{f^\prime(x_n)}\]
\[\therefore f(x) = x^2 - N, \quad f^\prime(x) = 2x\]
\[ x_{n+1} = x_n - \frac{x_n^2 - N}{2x_n} = \frac{1}{2} \left( x_n + \frac{N}{x_n} \right) \]

Example

Evaluate \(\sqrt {12}\) by Newton's formula

Solution

\[\because \sqrt 9 = 3, \quad \sqrt{16} = 4\]
\[x_0 = \frac {3 + 4}{2} = 3.5\]
\[ x_1 = \frac{1}{2} \left( x_0 + \frac{N}{x_0} \right) = \frac{1}{2} \left( 3.5 + \frac{12}{3.5} \right) = 3.4643 \]
\[ x_2 = \frac{1}{2} \left( 3.4643 + \frac{12}{3.4643} \right) = 3.4641 \]
\[ x_3 = \frac{1}{2} \left( 3.4641 + \frac{12}{3.4641} \right) = 3.4641 \]
\[\therefore \sqrt{12} = 3.4641\]

References

Read more about notations and symbols.


  1. Read more about taylor's series

  2. Read more about slopes

  3. Read more about roots of an equation

  4. Read more about regula falsi method

  5. Read more about numbers

  6. Read more about intervals

  7. Read more about functions

  8. Read more about iterative method