Skip to content

08. Muller’s Method

Dated: 16-08-2025

Example

Do two iterations of Muller’s method to solve \(x^3 - 3x + 1 = 0\) starting with \(x_0 = 0.5, x_2 = 0, x_1 = 1\)

Solution

\[f(x_0) = f_0 = (0.5)^3 - 3(0.5) + 1 = -0.375\]
\[f(x_1) = f_1 = (1)^3 - 3(1) + 1 = -1\]
\[f(x_2) = f_2 = 0 - 3 \times 0 + 1 = +1\]
\[c = f_0 = -0.375\]
\[h_1 = x_1 - x_0 = 0.5\]
\[h_2 = x_0 - x_2 = 0.5\]
\[a = \frac{h_2 f_1 - (h_1 + h_2)f_0 + h_1 f_2}{h_1 h_2 (h_1 + h_2)} = \frac{(0.5)(-1) - (-0.375) + (0.5)}{0.25} = 1.5\]
\[b = \frac{f_1 - f_0 - ah_1^2}{h_1} = -2\]
\[\therefore x = x_0 - \frac{2c}{+b - \sqrt{b^2 - 4ac}} = 0.5 - \frac{2(-0.375)}{-2 - \sqrt{4 + 4(1.5)(0.375)}} = 0.5 - \frac{-0.75}{-2 - \sqrt{4 + 2.25}} = 0.33333 < 0.5\]

Take

\[x_0 = 0.\overline{3}, \quad x_1 = 0.5, \quad x_2 = 0\]
\[h_1 = x_1 - x_0 = 0.16667, \quad h_2 = x_0 - x_2 = 0.\overline 3\]
\[c = f_0 = f(0.\overline 3)\]
\[= x_0^3 - 3x_0 + 1 = 0.037046\]
\[f_1 = x_1^3 - 3x_1 + 1 = - 0.375\]
\[f_2 = x_2^3 - 3x_2 + 1 = 1\]
\[a = \frac{h_2 f_1 - (h_1 + h_2)f_0 + h_1 f_2}{h_1 h_2 (h_1 + h_2)} = \frac{0.023148}{0.027778} = 0.8333\]
\[b = \frac{f_1 - f_0 - ah_1^2}{h_1} = -2.6\]
\[x = x_0 - \frac{2c}{b - \sqrt{b^2 - 4ac}} = 0.333333 - \frac{0.074092}{-5.2236} = 0.3475 > 0.333333 = x_0\]

For 3rd iteration, we take

\[x_0 = 0.3475, \quad x_1 = 0.5, \quad x_2 = 0.\overline 3\]

Graeffe’s Root Squaring Method

This one is for 3rd degree polynomial1

\[f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3\]
\[f(-x) = a_0 - a_1 x + a_2 x^2 - a_3 x^3\]
\[f(x)f(-x) = a_3^2 x^6 - (a_2^2 - 2a_1 a_3)x^4 + (a_1^2 - 2a_0 a_2)x^2 - a_0^2\]
\[f(x)f(-x) = a_3^2 t^3 - (a_2^2 - 2a_1 a_3)t^2 + (a_1^2 - 2a_0 a_2)t - a_0^2 \quad \text{where } t = x^2\]

Suppose, we have squared the given polynomial1 \(i\) times, then we can estimate the value of the roots by evaluating \(2i\) root2 of

\[\left| \frac{a_i}{a_{i-1}} \right|, \quad i=1,2,\dots,n\]

Where \(n\) is the degree of the polynomial.1

The proper sign of each root2 can be determined by recalling the original equation. This method fails, when the roots2 of the given polynomial1 are repeated.

\[f(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1}x + a_n\]
\[\left(x^n + a_2 x^{n-2} + a_4 x^{n-4} + \dots\right)^2 = \left(a_1 x^{n-1} + a_3 x^{n-3} + a_5 x^{n-5} + \dots\right)^2\]

Putting \(x^2 = y\) and after simplifying, we have

\[y^n + b_1 y^{n-1} + b_1 y^{n-1} + \dots + b_1 y^{n-1} + b_n = 0\]
\[ \begin{aligned} b_1 &= -a_1^2 + 2a^2 \\ b_2 &= a_2^2 - 2a_1 a_3 + 2a_4 \\ \cdots &= \cdots \\ b_n &= (-1)^n a_n^2 \end{aligned} \]

Example

Using Graeffe root squaring method, find all the roots2 of the equation

\[x^3 - 6x^2 + 11x - 6 = 0\]

Solution

Using Graeffe root squaring method, the first three squared polynomials1 are as under
For \(i = 1\), the polynomial1 is

\[x^3 - (36 - 22)x^2 + (121 - 72)x - 36 = x^3 - 14x^2 + 49x - 36\]

For \(i = 2\), the polynomial1 is

\[x^3 - (196 - 98)x^2 + (2401 - 1008)x - 1296 = x^3 - 98x^2 + 1393x - 1296\]

For \(i = 3\), the polynomial1 is

\[x^3 - (9604 - 2786)x^2 + (1940449 - 254016)x - 1679616 = x^3 - 6818x^2 + 1686433x - 1679616\]

The roots2 of polynomial1 are

\[\sqrt{\frac{36}{49}} = 0.85714, \quad \sqrt{\frac{49}{14}} = 1.8708, \quad \sqrt{\frac{14}{1}} = 3.7417\]

Similarly the roots2 of the polynomial1 are

\[\sqrt[4]{\frac{1296}{1393}} = 0.9821, \quad \sqrt[4]{\frac{1393}{98}} = 1.9417, \quad \sqrt[4]{\frac{98}{1}} = 3.1464\]
\[\sqrt[8]{\frac{1679616}{1686433}} = 0.99949, \quad \sqrt[8]{\frac{1686433}{6818}} = 1.99143, \quad \sqrt[8]{\frac{6818}{1}} = 3.0144\]

The exact values of the roots2 of the given polynomial1 are \(1, 2\) and \(3\).

References

Read more about notations and symbols.