09. Solution of Linear System of Equations (Gaussian Elimination
Method)
Dated: 16-08-2025
The solution of the system of equations gives \(n\) unknown values \(x_1, x_2, \ldots, x_n\), which satisfy the system simultaneously. If \(m > n\), the system usually will have an infinite number of solutions.
If \(|A| \ne 0\) then the system has a unique solution, otherwise, there is no solution.
Under elimination methods, we consider
Gaussian elimination
Gauss-Jordan elimination
Crout’s reduction
also known as Cholesky’s reduction
is considered under decomposition methods.
Gaussian Elimination Method
Stages
- The given system of equations is reduced to an equivalent
upper triangular
form using elementary transformations
.
- the
upper triangular
system is solved using back substitution procedure
.
\[
\begin{aligned}
a_{11}x_1 + a_{12}x_2 + &\cdots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + &\cdots + a_{2n}x_n = b_2 \\
&\vdots \\
a_{n1}x_1 + a_{n2}x_2 + &\cdots + a_{nn}x_n = b_n \\
\end{aligned}
\]
Stage 1
Substituting the value of \(x_1\) from first equation into the rest
\[
\begin{aligned}
x_1 + a_{12}^\prime x_2 + &\cdots + a_{1n}^\prime x_n = b_1^\prime \\
a_{22}^\prime x_2 + &\cdots + a_{2n}^\prime x_n = b_2^\prime \\
&\vdots \\
a_{n2}^\prime x_2 + &\cdots + a_{nn}^\prime x_n = b_n^\prime \\
\end{aligned}
\]
Now, \(x_1\) is eliminated for \((n - 1)^{th}\) equations, making them independent of \(x_1\).
Repeat the same process for \(x_2, x_3, \ldots, x_{n - 1}\).
This will get us the following upper triangular form
.
\[
\left.
\begin{aligned}
c_{11} x_1 + c_{12} x_2 + \cdots c_{1n} x_n &= d_1 \\
c_{22} x_2 + \cdots c_{2n} x_n &= d_2 \\
&\vdots \\
c_{nn} x_n &= d_n
\end{aligned}
\right\}
\]
Stage 2
The values of the unknowns are determined by backward substitution
. First \(x_n\) is found from the last equation and then substitution this value of \(x_n\) in the preceding equation will give the value of \(x_{n-1}\). Continuing this way, we can find the values of all other unknowns
Example
Solve the following system of equations using Gaussian elimination
method
\[
\begin{aligned}
2x + 3y - z &= 5 \\
4x + 4y - 3z &= 3 \\
-2x + 3y - z &= 1
\end{aligned}
\]
Solution
Stage 1
\[
\begin{aligned}
2x + 3y - z &= 5 \\
4x + 4y - 3z &= 3 \\
-2x + 3y - z &= 1
\end{aligned}
\]
\[
\left \downarrow
\begin{aligned}
\text{eq}_2 = \text{eq}_2 - \frac{\text{eq}_1}{2} \\
\text{eq}_3 = \text{eq}_3 - \frac{\text{eq}_1}{2} \\
\end{aligned}
\right.
\]
\[
\begin{aligned}
x + \frac 3 2 y - \frac z 2 &= \frac 5 2\\
3x + \frac 5 2 y - \frac 5 2 z &= \frac 1 2 \\
-3x + \frac 3 2 y - \frac z 2 &= -\frac 3 2
\end{aligned}
\]
\[
\left \downarrow
\begin{aligned}
\text{eq}_2 = \text{eq}_2 - 3 \times \text{eq}_1\\
\text{eq}_3 = \text{eq}_3 + 3 \times \text{eq}_1 \\
\end{aligned}
\right.
\]
\[
\left.
\begin{aligned}
x + \frac 3 2 y - \frac z 2 &= \frac 5 2\\
- 2 y - z &= -7 \\
6 y - 2 z &= 6
\end{aligned}
\right\}
\]
\[
\left \downarrow
\begin{aligned}
\text{eq}_2 = \frac {\text{eq}_2}{-2}\\
\end{aligned}
\right.
\]
\[
\begin{aligned}
x + \frac 3 2 y - \frac z 2 &= \frac 5 2\\
y + \frac z 2 &= \frac 7 2 \\
6 y - 2 z &= 6
\end{aligned}
\]
\[
\left \downarrow
\begin{aligned}
\text{eq}_3 = \text{eq}_3 - 6 \times \text{eq}_2\\
\end{aligned}
\right.
\]
\[
\left.
\begin{aligned}
x + \frac 3 2 y - \frac z 2 &= \frac 5 2\\
y + \frac z 2 &= \frac 7 2 \\
5 z &= -15
\end{aligned}
\right\}
\]
Stage 2
\[z = 3\]
\[\implies y = \frac{7}{2} - \frac{3}{2} = 2\]
\[\implies x = \frac{5}{2} + \frac{3}{2} - 3 = 1\]
Therefore, solution is \((1, 2, 3)\).
Partial and Full Pivoting
The Gaussian elimination
method fails if any one of the pivot
elements becomes zero
. In such a situation, we rewrite the equations in a different order to avoid zero pivots
. Changing the order of equations is called pivoting
.
In partial pivoting
, only the rows are interchanged but in full pivoting
, rows and columns are interchanged.
A linear system
of \(m\) equations can be written as \(n\) unknowns \(x_1, x_2, \ldots, x_n\).
\[
A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn}
\end{bmatrix} \\
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} \\
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{bmatrix} \\
\]
Example
Solve the system of equations by Gaussian elimination method
with partial pivoting.
\[
\begin{aligned}
x+y+z &= 7 \\
3x+3y+4z &= 24 \\
2x+y+3z &= 16
\end{aligned}
\]
\[
\begin{bmatrix}
1 & 1 & 1 \\
3 & 3 & 4 \\
2 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
=
\begin{bmatrix}
7 \\
24 \\
16
\end{bmatrix}
\]
However, a glance at the first column reveals that the numerically largest element is \(3\) which is in second row.
Interchanging first 2 rows, we have.
\[
\begin{bmatrix}
3 & 3 & 4 \\
1 & 1 & 1 \\
2 & 1 & 3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
=
\begin{bmatrix}
24 \\
7 \\
16
\end{bmatrix}
\]
Stage 1
\[
\begin{bmatrix}
1 & 1 & \frac{4}{3} \\
0 & -1 & \frac{1}{3} \\
0 & 0 & -\frac{1}{3}
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
=
\begin{bmatrix}
8 \\
0 \\
-1
\end{bmatrix}
\]
Stage 2
\[z = 3\]
\[\implies y = 1\]
\[\implies x = 3\]
References
Read more about notations and symbols.